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Chapter 1

Introduction

1.1 Problem definition

The subject project work deals with study and analysis of elementary (geometric) properties of

digital curves. We have attempted in this work to exploit these properties in order to design efficient

algorithms for producing the transformed pattern of a given digital curve after arbitrary affine

transformations (translation, rotation, and scaling).

Figure 1.1: A digital curve representing the first consonant in Bengali alphabet that shows the

objective of our work. The right curve is the transformed image of the left curve after a clockwise

rotation of 15 degrees.
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1.2 Preliminaries

Digital Curve: If P : (x, y) is a grid point, then an 8-neighbor of P is any grid point P ′ : (i′, j′)

with max(|i − i′|, |j − j′|) = 1. A digital curve C is, therefore, an ordered sequence of grid points

such that any point in C is an 8-neighbor of its predecessor in the sequence. We consider that a

digital curve C is irreducible; that is, removal of any grid point P from C makes C disconnected.

Affine Transformation: A coordinate transformation of the form

x′ = axx ∗ x + axy ∗ y + bx, y′ = ayx ∗ x + ayy ∗ y + by

is called a-two dimensional affine transformation. Each of the transformed coordinates x′ and y′

is a linear function of the original coordinates x and y and parameters a( ) and b( ) are constants

determined by the transformation type. Affine transformation have the general properties that par-

allel lines are transformed into parallel lines and finite points mapped to finite points. Translation,

rotation, scaling, and reflection are examples of two-dimensional affine transformation. Any gen-

eral two-dimensional affine transformation can always be expressed as composition of these basic

transformations. Another affine transformation is the conversion of coordinate descriptions from one

reference system to another which can be described as a combination of translation and rotation.

An affine transformation involving only rotation, translation, and reflection preserves angles and

lengths as well as parallel lines. For these three transformations, the lengths and angles between

two lines remain the same after the transformation.

1.3 Scope of work

Given a digital curve and the angle by which it is to be rotated, the present scope of work is to

output the rotated curve, while meeting the following challenges.

1. The segment of the curve that is continuous before rotation should remain continuous after

the rotation.

2. The number of grid points before rotation should be equal to the number of grid points after

the rotation (i.e., there should not be any overlap of grid points).

3. The digital curve should remain irreducible after the rotation (i.e., there should not be any

redundant grid points in the curve after the rotation).

4. The shape of the curve (with respect to the difference chain codes) should remain the same

after the rotation.

5. Floating point arithmetic should be avoided as much as possible in order to have fast execution

of the algorithm.
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Chapter 2

Existing Methods

φ
θ

x

y

(x, y)

(x’, y’)

r

r

Figure 2.1: Rotation of a point (x, y) about the origin by an angle θ produces the point (x′, y′),

where x′ = x cos(θ)− y sin(θ) and y′ = x sin(θ) + y cos(θ).

2.1 Using rotation matrix

Existing methods in most of the graphics and image processing softwares use rotation matrix. Ro-

tation of a point P (x, y) in the 2D plane is done about a point (xc, yc), which is called the center

of rotation, to get the rotated point P ′(x′, y′), using the 2D rotation matrix R(θ) (or, simply R), as

follows.

Rotation about the origin:

P ′ = RP =

[
cos θ − sin θ

sin θ cos θ

][
x

y

]
(2.1)
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Rotation about an arbitrary center Pc : (xc, yc): The major steps are

1. Translate the object by T (Pc) such that the center Pc coincides to origin (0, 0).

2. Apply rotation with origin as center of rotation.

3. Translate the object by T (−Pc).

The complete equation is, therefore, as follows (see Fig. 2.2).

M = T (−Pc)RT (Pc) (2.2)

From the above equation, the coordinates of the point P ′(x′, y′) after rotation by angle θ about the

point Pc(xc, yc) are given by

x′ = xc + (x− xc) cos θ − (y − yc) sin θ,

y′ = yc + (x− xc) sin θ + (y − yc) cos θ.
(2.3)

Figure 2.2: Rotation of the digital curve 123 by an angle of 120o about the point Pc(other than

origin).

2.1.1 Algorithm A1

Let C be the given connected digital curve, and Pc be the given point of rotation. Let {P1, P2, . . . , Pm}
be the ordered set of grid points of C. Then each point Pi ∈ C is rotated using the rotation matrix

R about the point Pc, as shown in Eqn. 2.3.

2.1.2 Observations and Results

The rotated curve is found to be discontinuous as evident from the results shown in Fig. 2.4.

Causes of discontinuity:

a. Round-off error. Due to the usage of floating point arithmetic in the calculation of the

coordinates of the rotated point (x′, y′), followed by rounding off (for realization in digital
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plane) as shown below.

x′ = (int)
(
0.5 + xc + (x− xc) cos θ − (y − yc) sin θ

)

y′ = (int)
(
0.5 + yc + (x− xc) sin θ + (y − yc) cos θ

)

These round-offs often lead to discontinuity between two points after rotation, which are

otherwise continuous before rotation.

b. Overlapping of grid points. Due to this, the number of points in the curve after rotation

is not equal to that before rotation. And this often leads to discontinuity in the rotated curve.

Figure 2.3: Input image.

(a) 10o (b) 30o

Figure 2.4: Two rotated images of a test curve (grid points overlapped, not continuous, not irre-

ducible).
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Chapter 3

Developed Methods

3.1 Based on Euclidean distance

3.1.1 Algorithm A2

Let C be the given connected digital curve. Let Pc be the given point of rotation. Let {P1, P2, . . . , Pm}
be the ordered set of grid points of C.

1. Rotate Pm to P ′m, with respect to Pc, using the rotation matrix R.

2. Set Q = P ′m and i = m− 1.

3. Compute the square of the Euclidean distance d2
2(Pc, Pi) of Pi from Pc.

4. Compute d2
2(Pc, Qj), where Qj corresponds to the jth 8-N point of Q, ∀ j ∈ {0, 1, . . . , 7}.

5. Choose Qj such that |d2
2(Pc, Pi) − d2

2(Pc, Qj)| is minimum. Note that this Qj represents the

rotated point corresponding to Pi.

6. Set Q to Qj .

7. Decrement i.

8. If i = 0, then stop; else goto step 4.

3.1.2 Observations and Results

1. Ensuring continuity. The algorithm is based on the fact that if there exist two points P1

and P2, one in the 8-neighborhood of the other before rotation, and if P1 is rotated to P ′1,

then the rotated point P ′2 corresponding to P2 will be one of the 8-N grid points of P ′1. As the

6



current rotated point will be placed on any one of the 8-N grid points of the previous rotated

point, so continuity is maintained.

2. No floating point arithmetic. Since for each discrete curve C, only the end point (Pm)

is rotated using floating point arithmetic (using rotation matrix ), this algorithm limits the

usage of floating point arithmetic to a great extent.

3. Not preserving shape. This algorithm is based on the assumption that the end point Pm of

the connected component C = {P1, P2, . . . , Pm} will be placed at the proper position after the

rotation. But the calculation of the rotated point using rotation matrix could not ensure such

an accuracy. The initial inaccuracy leads to accumulation of inaccuracies in the subsequent

calculations of grid points leading to shape deformation.

(a) Input image. (b) 5o ACLW Rotatation.

Figure 3.1: Results of algorithm A2 on the curve shown in Fig. 3.1(a) (grid points overlapped,

continuous curve, not irreducible, shape not maintained).

3.2 Based on Euclidean distance and sign.

Unlike the previous algorithm A2, where Euclidean distance of all the 8-N grid points (of the previous

rotated point) are computed in order to determine the location of the current grid point, here

Euclidean distance computation is done for at most four grid points at a time, which are selected

on the basis of a vector multiplication concept as follows.

If P1P2 be a directed line segment from P1 to P2, then the signed area A (see Fig. 3.2) of the

triangle 4P1P2P3 determines the position of P3 w.r.t. P1P2 as shown in the following equation.

P3 lies to the left of P1P2, if A > 0;

P3 lies to the right of P1P2, otherwise.
(3.1)
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P’3

P3

P1

P2

Figure 3.2: Vector multiplication

3.2.1 Algorithm A3

Let C be the given connected digital curve. Let Pc be the given point of rotation. Let {P1, P2, . . . , Pm}
be the ordered set of continuous grid points of C.

1. Rotate Pm to P ′m, with respect to Pc, using the rotation matrix R. Set Q = P ′m and i = m−1.

2. Compute the sign of 4PcP(i+1)Pi. Let it be sign(A).

3. Compute sign(Aj) = sign(4PcQQj), where Qj corresponds to the jth 8-N point of Q, ∀ j ∈
{0, 1, . . . , 7}.

4. Select those Qj which satisfy sign(Aj) = sign(A). Let the selected set of points be {Qk}.

5. Compute d2
2(Pc, Pi).

6. Compute d2
2(Pc, Qk), for each Qk obtained in step 5.

7. Choose a point Q′ from {Qk} for which |d2
2(Pc, Pi) − d2

2(Pc, Q
′)| is minimum. Q′ represents

the rotated point of Pi.

8. Set Q to Q′

9. Decrement i.

10. If (i = 0), then stop; else goto step 2.

3.2.2 Observations and Results

1. Ensuring continuity. Explained in Sec. 3.1.2.

2. No floating point arithmetic. Explained in Sec. 3.1.2.
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3. Preserving shape. Though the calculation of the rotated point using rotation matrix may

lead to inaccurate determination of initial rotated position, but this initial inaccuracy is cor-

rected by elimination of at least four grid points that are redundant in the sense that the

current rotated point can’t be any of these points.

4. An anomaly when sign(A) = 0. In case of horizontal or vertical lines, sign(A) = 0. In

that case it may happen that sign(Aj) 6= 0 ∀j ∈ {0, 1, . . . , 7}. Then it will be impossible

(using signed area) to select any point from the 8-N points of Q, while finding the rotated

coordinate of Pi. This degenerate case is handled by allowing Euclidean distance computation

of all the 8-N grid points of Q (an approach similar to algorithm A2), but this will incorporate

the disadvantages of algorithm A2.

(a) 8o (b) 12o

Figure 3.3: Results of algorithm A3 (continuous curve, not irreducible, shape maintained).

(a) Input (b) 15o (c) 20o

Figure 3.4: Results of algorithm A3 showing its limitations in case of straight line segments.
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3.3 Based on arc length

3.3.1 Algorithm A4

Let C be the given connected digital curve. Let Pc be the given point of rotation. Let {P1, P2, . . . , Pm}
be the ordered set of continuous grid points of C.

1. For each Pi in C,

1.1. Make Circle points that stores the circle points (in anticlockwise order) of all radii using

Bresenham’s algorithm*/

1.2. Compute r = d>(Pc, Pi), where d>(A,B) = max(|xa − xb|, |ya − yb|) represents isothetic

distance between two points A : (xa, ya) and B : (xb, yb).

1.3. Compute arc length = r ∗ θ.

1.4. Identify the point Pj(i) corresponding to Pi in Circle points, as follows.

a. For each point Pj on Circle points[r], compute d2
2(Pi, Pj).

b. Return Pj(i), such that its corresponding distance d2
2 is minimum.

1.5. If Circle points[r][k] = Pj(i), then the rotated version of Pi is given by P ′i = Circle points[r][k+

arc length].

3.3.2 Results and Observations

(a) Input image. (c) Output image.

Figure 3.5: Result of algorithm A4. A 5o rotated image of a bengali alphabet.
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(a) Pk is the point to be rotated. (b) Compute S = r ∗ θ, where r is the distance

of Pk from the center of rotation PV and θ is

the angle of rotation. r should be Euclidean,

but we have considered it as isothetic.

(c) The circle with center Pv(0) and radius r. (d) Identify the point Pk on the circle. Here

d2
2(Pk, Qj) = e 6= 0 for any Qj . Also

d2
2(Pk, Q3) = d2

2(Pk, Q4) is minimum. Hence

Q3 or Q4 is identified as Pk. Moreover the

error e increases with r, and then it become

difficult to identify Pk on the circle.

Figure 3.6: An anomaly of the algorithm A4.

3.4 Based on polling using sign check, isothetic distance, and

area

Previously by “the distance between two points” we meant the Euclidean distance, i.e., (x1−x2)2 +

(y1 − y2)2 is the distance between P1 and P2, but from now we introduce the concept of isothetic

distance as the distance between two points, i.e., max(|x1 − x2|, |y1 − y2|). In all the previous

algorithms, a point is rotated based on its position w.r.t the previous point which is rotated most

currently, i.e., the rotation decision depends upon a single pixel. But in the subsequent algorithms,

polling will be used, where a point will be rotated based on its position w.r.t three previously rotated

point.

11



3.4.1 Algorithm A5

Let C be the given connected digital curve. Let Pc be the given point of rotation. Let {P1, P2, . . . , Pm}
be the ordered set of continuous grid points of C.

1. Set constants Points rotated by matrix = 5, Num poll = 3, Offset = Points rotated by matrix+

1−Num poll = 3.

2. Rotate the points from P1 to P5 to get P
′
1 to P

′
5, with respect to Pc, using the rotation

matrix R. Set i = 6.

3. Initialize M = 0, sign selected points = [ ], Distance selected points = [ ]. /*sign selected points

is used to store points selected by sign check, Distance selected points is used to store selected

points of sign selected points after isothetic distance check.*/

4. Until M ≤ 2, do

4.1 Compute the sign of A = 4P(i−(M+offset)P(i−1)Pi. Let it be sign(A).

4.2 Compute the isothetic distance D>(P(i−(M+offset), Pi).

4.3 Also we compute sign(Aj) = sign(4P
′
(i−(x+offset))P

′
(i−1)Qj), where Qj corresponds to

the jth 8-N point of P
′
(i−1), ∀ j ∈ {0, 1, . . . , 7} and P

′
(i−(x+offset)), P

′
(i−1) are the points

obtained after rotating P(i−(x+offset)) and P(i−1) respectively.

4.4 Also we compute the isothetic distance d>(P
′
(i−(x+offset)), Qj), where Qj corresponds

to the jth 8-N point of P
′
(i−1), ∀ j ∈ {0, 1, . . . , 7}.

4.5 Compute sign selected points = sign selected points ∪Qj , ∀Qj which satisfy sign(Aj) =

sign(A).

4.6 Among the points of sign selected points transfer those points Qj to Distance selected points

so that the correponding error |D>(P(i−(M+offset), Pi)−d>(P
′
(i−(x+offset)), Qj)| is min-

imum.

4.7 Select a point Qj from Distance selected points so that the corresponding error in area

|A−Aj | is minimum. Let the selected point be QjM , increment M, goto step 4.

5. Select that point among QjM for 0 6 M 6 2 which wins the vote. QjM represents the rotated

point of Pi. (In case of a tie, where all the three points QjM for 0 6 M 6 2, are distinct, the

points that encountered all the three checks (sign check, distance check, area check, in order)

will be given the higher priority in selection than those which encountered lesser number of

checks.)

6. Increment n.

7. If (i = 0), then stop; else goto step 3.
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Output image.

Figure 3.7: Result of algorithm A5. A ACLW 60o rotated image of fig.2.3.

(a) Input (b) 15o (c) 20o

Figure 3.8: Results of algorithm A5.

3.4.2 Results and Observations

1. sign(4) = 0 anomaly tackled: In case of horizontal or vertical lines, sign(4) = 0. In

that case it may happen that sign(4(D))! = 0 ∀ D ∈ {E, NE,N, NW,W,SW,S, SE}. Then

it will be impossible ( according to algorithm A3) to select any point from the 8-nbd points

of Q, while finding the rotated coordinate of Pn. This case is handled by allowing isothetic

distance check and area check of all the 8-nbd grid points, which helps to extract the best (

and accurate, in most of the cases) results.

2. Shape not maintained: It is clear from the figure shown below that if n points are placed

horizontally or vertically, then if after rotation they are placed diagonally, then there is an

increment in real distance by (n
√

2− n).

13



Figure 3.9: Cause of non-maintenace of shape.

Shape Maintenance Algorithm

1. Set in count dis1 = 0, in count dis
√

2 = 0, out count dis1 = 0, out count dis
√

2 = 0.

2. In the input image, if the next point scanned is placed horizontally or vertically, increment

in count dis1, otherwise increment in count dis
√

2 ( when the next point scanned lie

diagonally).

3. Similarly in the output image, if the next point is placed ( after rotation) horizontally

or vertically, increment out count dis1, otherwise increment out count dis
√

2 (when the

next point lie diagonally).

4. Every placement of point in the output image is followed by a consistency check ,

|(in count dis1 +
√

2 ∗ in count dis
√

2) − (out count dis1 +
√

2 ∗ out count dis
√

2)| <

TOLERANCE(= 1). Violation of this check prevents points to be outputted to the

output image until the normal condition is restored.

Results of Shape Maintenance Algorithm

14



(a) 30o (c) 120o

Figure 3.10: Results of algorithm A5 with shape maintenance algorithm.Two ACLW rotated images

of fig.2.3

(a) Input (b) 15o (c) 20o

Figure 3.11: Results of algorithm A5 with shape maintenance algorithm.

3. Variation of rotation of the curve with the angle of rotation is small:

15



(a) 10o (c) 20o

Figure 3.12: Two ACLW rotated images of fig.2.3. No variation in shape in the range 10o-20o

(a) 25o (c) 55o

Figure 3.13: Two ACLW rotated images of fig.2.3. No variation in shape in the range 25o-55o

3.5 Based on algorithm A5 with some initialisation points.

3.5.1 Description

The inability of algorithm A5 to rotate digital curves at all possible angles ( especially at small

angles) could be accounted for inaccuracy in the placement of initial five points by floating point

arithmetic using rotation matrix. This problem could be thought to be alleviated by appending

five initial points at the beginning of the digital curve and rotating those five points using rotation

matrix ( instead of rotating initial five points on the digital curve using rotation matrix).

16



3.5.2 Algorithm A6

Let C be the given connected digital curve. Let Pc be the given point of rotation. Let {P1, P2, . . . , Pm}
be the ordered set of continuous grid points of C.

1. Set constants Points rotated by matrix = 5, Num poll = 3, Offset = Points rotated by matrix+

1−Num poll = 3.

2. Append points {P(−4), P(−3), P(−2), P(−1), P(0)} at the beginning of the curve {P1, P2, P3, . . . , Pn}.
Then P(−4) to P(0) is rotated to P

′
(−4) to P

′
(0), with respect to Pc, using the rotation matrix

R(θ). Set i = 1.

3. Initialize M = 0, sign selected points = [ ], Distance selected points = [ ]. /*sign selected points

is used to store points selected by sign check, Distance selected points is used to store selected

points of sign selected points after isothetic distance check.*/

4. Until M ≤ 2, do

4.1 Compute the sign of A = 4P(i−(M+offset)P(i−1)Pi. Let it be sign(A).

4.2 Compute the isothetic distance D>(P(i−(M+offset), Pi).

4.3 Also we compute sign(Aj) = sign(4P
′
(i−(x+offset))P

′
(i−1)Qj), where Qj corresponds to

the jth 8-N point of P
′
(i−1), ∀ j ∈ {0, 1, . . . , 7} and P

′
(i−(x+offset)), P

′
(i−1) are the points

obtained after rotating P(i−(x+offset)) and P(i−1) respectively.

4.4 Also we compute the isothetic distance d>(P
′
(i−(x+offset)), Qj), where Qj corresponds

to the jth 8-N point of P
′
(i−1), ∀ j ∈ {0, 1, . . . , 7}.

4.5 Compute sign selected points = sign selected points ∪Qj , ∀Qj which satisfy sign(Aj) =

sign(A).

4.6 Among the points of sign selected points transfer those points Qj to Distance selected points

so that the correponding error |D>(P(i−(M+offset), Pi)−d>(P
′
(i−(x+offset)), Qj)| is min-

imum.

4.7 Select a point Qj from Distance selected points so that the corresponding error in area

|A−Aj | is minimum. Let the selected point be QjM , increment M, goto step 4.

5. Select that point among QjM for 0 6 M 6 2 which wins the vote. QjM represents the rotated

point of Pi. (In case of a tie, where all the three points QjM for 0 6 M 6 2, are distinct, the

points that encountered all the three checks (sign check, distance check, area check, in order)

will be given the higher priority in selection than those which encountered lesser number of

checks.)

6. Increment n.

7. If (i = 0), then stop; else goto step 3.
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3.5.3 Observations and Results

The inability to rotate at all possible angles( especially at small angles) could be accounted

for inability to rotate initial five imaginary points by floating point arithmetic using rotation

matrix as the set of imaginary points form a straight line and straight lines are unable to rotate

at small angles ( < 5o − 10o).

(a) 20o (c) 30o

Figure 3.14: Results of algorithm A6. Two ACLW rotated images of fig.2.3
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Chapter 4

Conclusion and Future Scope

Table 4.1: Comparision of algorithms A1 to A6 on basis of image criteria.

A1 A2 A3 A4 A5 A6

Maintenance of shape Yes No Yes No Yes No

Continuity maintenance No Yes Yes No Yes Yes

Limited usage of floating arithmatic No Yes Yes Yes Yes Yes

Overlapping of grid point Yes Yes Yes Yes No No

Irreducible No No No No No No

From the above comparison it is clear that algorithm A5 yeild the best results among the

others. But it suffered from the sole disadvantage that it yeilds results for multiples of 45o,

but there is no change in the shape in the range 45o ∗ n - 45o ∗ (n + 1), n = 0, 1, . . . .

Future scope of work

The future scope of work involves further modification of algorithm A6 so as to ensure the

following :

1. Better handling of curve segments with sign(A) = 0.

2. Eliminating redundant grid points while maintaining the continuity of the curve.

3. The overlapping of grid points should be totally eliminated.

4. Modification of algorithm A5 to ensure rotation of curve for all angles of rotation.

19



Bibliography

[1] Donald Hearn, M Pauline Baker, Computer Graphics-2nd Edition. , Prentice-Hall of India Pri-

vate ltd.

[2] James D. Folley, Andries Van Dam, Steven K. Feiner, Jhone F. Hughes, Computer Graphics-

Principles and practics, Addison-Wesley Publishing Company.

[3] Adobe system, Inc., PS language tutorial and cookbook, Addsion-Wesley Reading, MA, 1985.

[4] Beatty, J.C., K.S.Booth, eds., Tutorial : Computer Graphics -Second Edition. IEEE comp. soc.

press, Silver spring, MD, 1982.

20


