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Binary Analysis is Important

The ability to directly reason about binary is important     

scenarios where binary analysis is useful

❑Missing source code (e.g. legacy or malware)

❑ Avoids trusting compilers

❑ Avoids separate abstractions for library code
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A General Approach for Binary 
Analysis

DisassemblerBinary 
Code

High-
Level IR
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Assembly 
Code

Lifter
Post-Lifter

Actions

Recover high-level primitives
• Instructions
• Control-flow graphs
• Functions boundaries

Enable re-targetability 
to multiple ISAs.

• Recovery of types, 
variables, and 
function prototypes

• Re-target or re-opt 
for different ISAs

• Binary Patching



Lifting is Challenging
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Manual encoding the effects of binary instructions is hard

❑ Vast number of instructions

❑ Standard manuals are often ambiguous, buggy, include 
divergence in the behaviours of variants

❑ Lack of formal operational ISA specifications (in general)



Lifting is Pivotal in Binary Analysis
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Validation of  Lifting is Critical
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Faithful binary translation strengthens trust in binary analysis results



Thesis Statement

To develop formal and informal techniques to achieve high 
confidence in the correctness of binary lifting, from a complex 

machine ISA (e.g., x86-64) to a rich IR (e.g., LLVM IR), by 
leveraging the semantics of languages involved (e.g., x86-64 and 

LLVM IR)
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Summary of  Prior Work
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Require random 
testing

• Martignoni et al. 
ISSTA’10

• Chen et al. CLSS’15 

Restricted to 
instruction- or basic-
block-level validation

▪Martignoni et al. 
ISSTA’10, ASPLOS’12

▪ Chen et al. CLSS’15

▪Meandiff - Kim et al. 
ASE’17

Require 
instrumentation

▪ Reopt-vcg, John et 
al. SpISA’19



Scope of  the work
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Validating the translation from x86-64 programs to LLVM IR using 
McSema - a mature, active maintained, and open-source lifter 



Our Approach: Intuition
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Most binary lifters are designed to perform simple instruction-by-
instruction lifting  followed by standard IR optimizations to achieve simpler 

IR code

Formal translation validation of single machine instructions can be used as 
a building block for scalable full-program validation

Observation

Intuition



Our Two-Phase Approach
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Phase I Single-Instruction Translation-Validation (SITV)

❖ Translation-validation of lifted instructions in isolation

❖ Leverages our prior work on formalizing x86-64 semantics

Phase II Program-level Validation (PLV)

❖ A scalable approach for full-program validation build on SITV

❖ Cheaper than symbolic-execution based equivalence checking



Contributions
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❑ Defining the formal Semantics of x86-64 (PLDI’19)
▪ Most Complete user-level instruction semantics
▪ Faithful up to through testing
▪ Revealed Bugs in Intel Manual and related semantics
▪ Useful for various formal analyses

❑ Developing scalable technique for validating lifters (PLDI’20)
▪ First SIV framework for an extensive x86-64 ISA
▪ Revealed Bugs in a mature lifter like McSema
▪ Novel Technique for SITV-assisted full-program validation



Defining Formal Semantics of  
x86-64 ISA
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Challenges: from ISA Spec to Semantics
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❑ 3000+ pages of informal description

❑ 996 unique mnemonics with 3736 variants

❑ Inconsistent behavior of variants



Scope of  Work (3155 / 3736)

15

• General

• FC16

• FMA

• AVX2

• AVX

• SSE

Supported

(3155)
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Approach Overview
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*  BVL: Bit-vector logic

Approach Overview

Strata BVL* 
semantics

60% in 

scope



Modeling
Unsupported

artifacts

Validating 
semantics of

instruction-variants
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*  BVL: Bit-vector logic

Approach Overview

Strata BVL* 
semantics

60% in 

scope

augmented
&

corrected

semantics
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Formula 
simplification **

count reduction

*  BVL: Bit-vector logic

**  30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms 

Approach Overview

Strata BVL* 
semantics

60% in 

scope

augmented
&

corrected

semantics

simplified
semantics

Modeling
Unsupported

artifacts

Validating 
semantics of

instruction-variants
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Formula 
simplification **

count reduction

BVL → K  translator

*  BVL: Bit-vector logic

**  30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms 

Approach Overview

semantics 
in K

Strata BVL* 
semantics

60% in 

scope

augmented
&

corrected

semantics

simplified
semantics

Modeling
Unsupported

artifacts

Validating 
semantics of

instruction-variants



21

Formula 
simplification **

count reduction

BVL → K  translator

*  BVL: Bit-vector logic

**  30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms 

Approach Overview

Validation

SMT

Formula

SMT

Formula

semantics 
in K

Strata BVL* 
semantics

60% in 

scope

augmented
&

corrected

semantics

simplified
semantics

Modeling
Unsupported

artifacts

Validating 
semantics of

instruction-variants



22

Formula 
simplification **

count reduction

BVL → K  translator

*  BVL: Bit-vector logic

**  30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms 

Approach Overview

Manually translation

Intel 
informal 

spec

40% in 

scope

semantics 
in K

Strata BVL* 
semantics

60% in 

scope

augmented
&

corrected

semantics

simplified
semantics

Modeling
Unsupported

artifacts

Validating 
semantics of

instruction-variants



Support Comparison
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Support Comparison
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10% Deprecated + 1% 
Crypto & Concurrency#user-level: ~3536

#system-level: ~200



Validation of  Semantics
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Comparing with 
hardware

Instruction Level Testing

(7000+ inputs states )

Program Level Testing

(GCC-c torture tests)

Comparing with 
Stoke

Comparing SMT 
formula

12+ Bugs reported  
• Intel Manual
• Strata formulas

40+ Bugs reported 
In Stoke 



A Few Reported Bugs
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Intel Manual Vol. 2: May 2019

Intel Manual Vol. 2: March 2018



A Few Reported Bugs
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Stoke Implementation May 2018

Intel Manual Vol. 2: May 2019



A Few Potential Applications

❑ Program verification

❑ Translation validation of compiler optimization

❑ Security vulnerability tracking 
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Lifter Validation: Our Approach
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❖ Phase I Single-Instruction Translation-Validation (SITV)

❖ Phase II Program-level Validation (PLV)



Overall Goal
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Our goal is to validate the translation from P to T

main:

Binary Program (P) Lifted IR Program (T)

bin_inst1

bin_inst2

…

bin_instn

ir_inst1

ir_inst2

…

ir_instm

define  … @main(…) {

}

Lifter (D)



Single-Instruction Translation Validation
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main:

bin_inst1

bin_inst2
…

bin_instn

Lifted
IR

Seq.

Lifted
IR 

Seq.

SITV* SITV* SITV*

*SITV: Single Instruction Translation Validation Framework

Translation Validated!

,

Lifted
IR

Seq.

Translation Validated!

,

Validation Failed!
(Report Bug)

Translation Validated!

,

Validated-Instruction Store Cache

D DDbin_inst1 bin_inst2
bin_instn

Lifted
IR

Seq.

Lifted
IR 

Seq.

Lifted
IR

Seq.

Binary Program (P)



Lifted IR Seq., SBinary Instr, I

SITV
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Symbolic-execution
(using x86-64 semantics)

Symbolic-execution
(using LLVM semantics)

Symbolic-summary, sumI Symbolic-summary, sumS

Verification-condition (VC) generator

VC: assert ( sumS ≠ sumI)

SMT Solver

R

Validation Failed (Report Bug)

== sat

Translation Validated!

== unsat

• Derived from semantics using K 
• Not Performance heavy: Loops rarely 

found in instructions’ specs



SITV: Evaluation Setup
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Applied translation validation on 1349 out of 3736 instruction variants

❑McSema supports 1922 variants; all supported by our ISA model

❑ Exclude 573 because of limitations of LLVM semantics 
e.g., unsupported vector or FP types, intrinsic functions

❑ Solver runtime: min - 0.25 s, max – 29.89 s, median – 0.46 s



Lifted IR Seq., SBinary Instr, I

SITV
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Symbolic-execution
(using x86-64 semantics)

Symbolic-execution
(using LLVM semantics)

Symbolic-summary, sumI Symbolic-summary, sumS

Verification-condition (VC) generator

VC: assert ( sumS ≠ sumI)

SMT Solver

R

Runtime 
(mins)

Min: 1.7
Max: 14
Median: 8 

Runtime 
(mins)

Min: 1.7
Max: 3.3
Median: 3.3 

Runtime 
(secs)

Min: 0.25
Max: 29.89
Median: 0.46 

SITV: Performance



Lifted IR Seq., SBinary Instr, I

SITV
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Symbolic-execution
(using x86-64 semantics)

Symbolic-execution
(using LLVM semantics)

Symbolic-summary, sumI Symbolic-summary, sumS

Verification-condition (VC) generator

VC: assert ( sumS ≠ sumI)

SMT Solver

R

SITV: Revealed Bugs

== sat

Validation Failed (Report Bug)

Found 29 
solver failures 

all 
acknowledged 

as bugs by 
McSema

developers



SITV: A  Few Reported Bugs
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Intel Manual Vol. 2: May 2019

xaddq %rax, %rbx

(1) temp ← %rax + %rbx
(2) %rax ← %rbx
(3) %rbx ← temp

McSema Implementation

xaddq %rax, %rbx
(with same operands)

(A) old_rbx ← %rbx
(B) temp     ← %rax + %rbx
(C) %rbx ← temp 
(D) %rax ← old_rbx



SITV: A  Few Reported Bugs
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Intel Manual Vol. 2: May 2019

pmuludqu (128-bit operands)

(1) DEST[63:0] ← DEST[31:0] * SRC[31:0] 
(2) DEST[127:64] ← DEST[63:32] * SRC[63:32] 

McSema Implementation

pmuludqu (128-bit operands)

(1) DEST[63:0] ← DEST[31:0] * SRC[31:0] 
(2) DEST[127:64] ← (unchanged)



SITV: A  Few Reported Bugs
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Intel Manual Vol. 2: May 2019

cmpxchgl %ecx, %ebx

TEMP ← ebx
IF eax = TEMP THEN
ZF ← 1; 
ebx ← ecx; 

ELSE
ZF ← 0; 
eax ← TEMP; 
ebx ← TEMP; 

FI;

McSema Implementation

cmpxchgl %ecx, %ebx

TEMP ← rbx
IF (32’0 ◦ eax) = TEMP THEN
ZF ← 1; 
ebx ← ecx; 

ELSE
ZF ← 0; 
eax ← TEMP; 
ebx ← TEMP; 

FI;



Lifter Validation: Our Approach

39

❖ Phase I Single-Instruction Translation-Validation (SITV)

❖ Phase II Program-level Validation (PLV)



SITV

define … @someFunction (%struct.State* %S, …) {

%RAX = getelementptr ... %S, …;  Compute simulated RAX address
%RBX = getelementptr ...  %S, …;  Compute simulated RBX address
%RCX = getelementptr ...  %S, …; Compute simulated RCX address

; addq %rax, %rbx
%VAL_RBX = load i64, i64* %RBX
%VAL_RAX = load i64, i64* %RAX
%X = add i64 %VAL_RAX, i64 %VAL_RBX
store i64 %X, i64* %RBX

; mov 0x60f238, %rax
%VAL_MEM = load i64, i64* %GLOBL
store i64 %VAL_MEM, i64* %RAX

}

.data
0x60f238: <GLOBL>
…
.text
someFunction:
addq %rax, %rbx
movq 0x60f238, %rax

Binary Program (P)

Lifted IR Program, T

Pre-computed 
Simulated Address



define … @someFunction (%struct.State* %S, …) {

%RAX = getelementptr ... %S, …;  Compute simulated RAX address
%RBX = getelementptr ...  %S, …;  Compute simulated RBX address
%RCX = getelementptr ...  %S, …; Compute simulated RCX address

; addq %rax, %rbx
%VAL_RBX = load i64, i64* %RCX
%VAL_RAX = load i64, i64* %RAX
%X = add i64 %VAL_RAX, i64 %VAL_RBX
store i64 %X, i64* %RBX

; mov 0x60f238, %rax
%VAL_MEM = load i64, i64* %GLOBL
store i64 %VAL_MEM, i64* %RAX

}

.data
0x60f238: <GLOBL>
…
.text
someFunction:
addq %rax, %rbx
movq 0x60f238, %rax

Lifted IR Program, T

SITV

Binary Program (P)



define … @someFunction (%struct.State* %S, …) {

%RAX = getelementptr ... %S, …;  Compute simulated RAX address
%RBX = getelementptr ...  %S, …;  Compute simulated RBX address
%RCX = getelementptr ...  %S, …; Compute simulated RCX address

; addq %rax, %rbx
%VAL_RBX = load i64, i64* %RBX
%VAL_RAX = load i64, i64* %RAX
%X = add i64 %VAL_RAX, i64 %VAL_RBX
store i64 %X, i64* %RBX

; mov 0x60f238, %rax
store i64 6353464, i64* %RAX

}

.data
0x60f238: <GLOBL>
…
.text
someFunction:
addq %rax, %rbx
movq 0x60f238, %rax

Lifted IR Program, T

SITV

Binary Program (P)



PLV: Our Approach

To propose an alternate reference program, T’, generated by 
carefully stitching the validated lifted IR sequences (using SITV)

❑ Transformation: Uses semantic preserving transformations to 
reduce T’ and original lifted program (T) to a common form

❑Matching: Checks the data-dependence graphs of transformed 
versions for graph-isomorphism

Compositional Lifting

Transformation & Matching
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bin_inst1 bin_inst_2 bin_inst_n LIRSnLIRS2, LIRS1 , ,

Validated-Instruction Store Cache

Binary Program (P)

bin_inst1

bin_inst2

…

bin_instn

Proposed IR Program, T’

main:
define  … @main(…) {

LIRS1

glue code

LIRSnLIRS2

glue code

…
glue code

}

PLV: Compositional Lifting
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For each function F’ of T’

PLV: Normalization & Matching

define  … @main(…) {
glue code

glue code

…
glue code

}

LIRS1

LIRS2

LIRSn

For each function F of T

ir_inst1

ir_inst2

…
ir_instm

define  … @main(…) {

} FN

F’N

Data-Dependence Graph, GN

Data-Dependence Graph, G’N

Matcher
Are G & G’N 

isomorphic?

T & T’
semantically 

equivalent

Potential 
Bug in Lifter

Normalizer
(LLVM passes)

Normalizer
(LLVM passes) Vertex: 

LLVM instruction
Edge: 
SSA def-use or memory 
dependence relation 
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PLV: Extra Diagram

define  … @main(…) {
glue code

glue code

…
glue code

}

LIRS1

LIRS2

LIRSn

For each function F of T

someFunc:

…

400494: mov    %edi,-0x8(%rbp)
400497: cmpl $0x1,-0x8(%rbp)
40049b: jge 4004ad
4004a1: movl $0x1,-0x4(%rbp)
4004a8: jmpq 4004b4
4004ad: movl $0x0,-0x4(%rbp)

…



Compositional Lifter: Algorithm
Inputs : P: x86-64 binary program.

Store: Validated pairs (<I, S> ) of instruction I and lifted IR sequence S (possibly empty)
Output: Lifted IR Program T’

T’ ← φ
foreach I in P do

if I not in Store then
S ← McSema (I)
Perform Translation Validation of I and S (Phase I) 
if Validation successful then

Add < I , S > to Store Cache
else

Report Bug
end

else
Extract S from Store Cache corresponding to I

end
T’ ← Compose(T’ , S)

end

return T’

Could be done offline !

SITV

Performance depends 
heavily on the availability of 
instructions in Store Cache

SITV

Very simple in design, however,

No formal guarantee that T’ 
is the correct translation of P

PLV can be done prior to 
SITV



Compositional Lifter: Evaluation
Evaluated on 2348 binaries compiled from LLVM single-source 
benchmark functions
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Normalizer

❑ Prunes-off syntactic differences between T & T’ except for
▪ Names of virtual registers, and 
▪ Order of non-dependent instructions

❑ Uses 17 LLVM optimizations passes (manually discovered)

mem2reg licm gvn early-cse globalopt simplifycfg
basicaa aa memdep dse deadargelim libcalls-shrinkwrap tailcallelim

simplifycfg basicaa aa instcombine

Optimization passes 
NOT formally-verified



Matcher: Iso-Graph Algorithm
(Borrowed from Saltz at al.*)

1. Finding 𝛟, Initial Match Set, 𝐎(𝐧𝟐): For each node n of G, 
find all potential matches n’ in G’

2. Iterative Step:  Iteratively prunes out elements from ϕ of 
each vertex based on its parents/child relations until fixed-
point is reached

Time: O(n2 x | 𝛟 |) and | 𝛟 | = O(n)

*An Algorithm for Subgraph Pattern Matching on Large Labeled Graphs, IEEE International Congress on Big Data’14



Matcher: Iso-Graph Algorithm
(Borrowed from Saltz at al.*)

1. Finding 𝛟, Initial Match Set: For each node n of G, find all 
potential matches n’ in G’

2. Iterative Step:  Iteratively prunes out elements from ϕ of 
each vertex based on its parents/child relations until fixed-
point is reached

*An Algorithm for Subgraph Pattern Matching on Large Labeled Graphs, IEEE International Congress on Big Data’14



Constraining : Our Approach 

1. Finding 𝛟, Initial Match Set: For each node n of G, find all 
nodes n’ in G’ s.t n & n’ satisfies
• Same instruction opcode
• Same constant operands 
• Same number of outgoing edges

| 𝛟 | << n 
Improves the complexity of iterative step



Matcher: Evaluation

❑ Run Matcher on 2348 LLVM single-source benchmark functions
▪ Runtime: ranges from 0.06s − 119.63s, median - 4.91s 

❑ Proved correctness of 2189 /2348 translations; success rate - 93%
▪ LOC of lifted IR: ranges from 86 − 32105,  median - 611 
▪ Remaining 159 manually inspected as false negatives; rate - 7%

❑ No real bugs found: Effectiveness evaluated using artificially 
injected bugs



Normalizer: Phase Ordering Problem

❑ Changing the order of normalizer passes improves matching 
results

❑ Not all of 17 passes are needed for every pair of functions

To frame the problem of selecting the normalizing pass 
sequence as an application of pass-sequence autotuning

Observation

Intuition



Autotuning Based Normalizer

Instead of using a fixed-length normalizer pass-sequence for all 
function pairs, we will use an autotuner to find optimal pass-

sequences one for each function pair



Autotuning Based Normalizer

Used OpenTuner* framework for autotuning

▪ Search Space: Includes passes from the 17-length pass sequence

▪ Objective Function: Maximize 

n = number of vertices in G
t =   number of nodes in G having non-empty ϕ

* OpenTuner: An Extensible Framework for Program Autotuning, PACT’14



Autotuning Pipleline
Inputs: F, F’ : Function pair compared for equivalence

S : Autotuner Search Space
B : Resource Budget
C : Objective-Function 

Output: Set of candidate normalization passes satisfying C within B

candidate-passes = φ
while( B not exhausted )

t     = Autotuner-Search(S)
FN = Normalizer(F,  t)
F’N = Normalizer(F’, t)

if check-objective-function-is-met(C, GN, G’N) 
candidate-passes = candidate-passes U t

end
return candidate-passes



Improved Matcher Pipeline
Inputs: F, F’:  Function pair compared for equivalence

candidate-passes: Autotuner generated candidate pass sequences
Output: true → F & F ′ semantically equivalent   

false → F & F ′ may-be non-equivalent

foreach t in candidate-passes do
FN = Normalizer(F,  t)
F’N = Normalizer(F’, t)

if IsGraphIsomorphic(GN, G’N)
return true

end
end
return false



Autotuning Based Normalizer: Results

❑ Opentuner runtime range from 10.7 s - 19.97 m, median - 6.67 m

❑ Reduces false-alarm rate from 7% to 4%

❑ Length of autotuned-pass-sequence: median - 7, mean – 8 (< 17 ! )



Summary
❑ Validation of lifters w/o instrumentation or heavyweight 

equivalence checking is feasible

❑ Capitalized on a simple insight
Formal translation validation of single machine instructions is not only practical 

but also can be used as a building block for scalable full-program validation

❑ SITV valuable in finding real bugs in a mature lifter 

❑ Proposed scalable full-program validation approach leveraging SITV



Backup

61

Questions



• Matcher soundness ??
• Compd not formalized?
• Matcher False negatives? More structer graph iso?
• Control flow violations?

• Examples of Binary Analysis?
• Different ways of doing binary analysis?
• Detail about cmpxchg? Why max time?

• Halide Paper?
• Add more Appl, Bug in x86-64 sema, SIV Bugs

• Outline
• Shake

62



Security Vulnerability Tacking
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uintptr_t safe_addptr (int *of, uint64_t a, uint64_t b) 
{

uintptr_t r = a + b;

if ( r < a )  // Condition not sufficient to prevent

// overflow in case of 32-bit compilation

*of = 1;
return r ;

}

Code snippet borrowed from HiStar kernelOSDI’06, in which KLEEOSDI’08 found a security vulnerability

uintptr_t r = a + b
r < a  

*of =1

return r

// Overflow not detected
// Overflow detected



Security Vulnerability Tacking
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Use symbolic-execution to find an 
input (a,b) such thatuintptr_t r = a + b

r < a  

*of =1

return r

// Overflow not detected
// Overflow detected



Security Vulnerability Tacking
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Use symbolic-execution to find an 
input (a,b) such that

No overflow detected
i.e. (a + b mod 2 ^ 32 ) ≥ a

uintptr_t r = a + b
r < a  

*of =1

return r

// Overflow not detected
// Overflow detected



Security Vulnerability Tacking
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Use symbolic-execution to find an 
input (a,b) such that

Overflow occurs
i.e. a + b ≥ 2^32 

And

uintptr_t r = a + b
r < a  

*of =1

return r

// Overflow not detected
// Overflow detected

No overflow detected
i.e. (a + b mod 2 ^ 32 ) ≥ a



Limitations

❑ Incomplete LLVM Semantics

❑ Normalizer not formally-verified



• BV[I:J] ∘ BV[J:K] → BV[I:K]

• BV[ 0 : bitwidth(BV)-1 ] → BV

• (BV1[0:63] ∘ BV2[0:63])[0:31] → BV2[0:31]

• (BV1[0:63] ∘ BV2[0:63])[64:96]  → BV1[0:31]

• (BV1[0:63] ∘ BV2[0:63])[32:96]  → (BV1[0:31] ∘ BV2[32:63])

• (BV[32:63])[0:8] → BV[32:39]

• (BV1 boolOp BV2)[I:J] → BV1[I:J] & BV2[I:J]

• ( cond ? BV1:BV2)[I:J] → ( cond ? BV1[I:J]:BV2[I:J])

• BV ∘ ( cond ? BV2 : BV3) → ( cond ? BV ∘ BV1: BV ∘ BV2)

• ( cond ? BV1 : BV2) binOp ( cond ? BV3 : BV4) → ( cond ? BV1 binOp BV3 
: BV2 binOp BV4)

• add_double(A, 0) → A if MSB of A is 0  /* To avoid A being -0.0 */

Simplification Rules

68



Sound transpilation from binary to 
machine-independent code, Roberto et al. SBMF 2017

❑ Formally modeled BIL IR in the interactive theorem prover HOL4

❑ Implemented a verified transpiler for ARMv8 programs to BIL IR

❑ Handling other machine architectures (e.g. x86, x64 MIPS) require  
developing new transpilers

❑ Verified transpilation of an instruction takes ∼ 9 s
❑ Evaluated on few examples; Biggest ones are 
▪ bignum library function with 141 Arm instructions → 907 lines of BIL
▪ AES functions with 535 Arm instructions → 3920 lines of BIL



Why LLVM is Pervasively as Lifted IR

❑ Mature symbolic Analysis tools like  KLEE
❑ Industry standard optimization passes used for re-optimzation and 

re-targeting  
❑ Clang LibTooling for efficient instrumentation
❑ Decompilers like llvm-mctoll* makes heavy use of LLVM 

compilation pileline

* Aaron Smith and S. Bharadwaj Yadavalli. 2018. LLVM Based Binary Raiser: llvm-mctoll



Matching Results: Spec2006

❑ Out of total 3870 functions, success rate is 60%
❑ Working on the 40% failure cases (potential false negatives )

* Aaron Smith and S. Bharadwaj Yadavalli. 2018. LLVM Based Binary Raiser: llvm-mctoll



conc_pc: jz 8 
(conc_pc is the concrete value of PC for current instruction in isolation)

X86-64 Semantics
RIP = conc_pc
RIP summary: SYMX_ZF ==1 ? conc_pc + 8 : conc_pc + 2

LLVM Semantics
PC = conc_pc
PC summary: SYML_ZF ==1? conc_pc + 8 : conc_pc  + 2
Current Block summary: SYML_ZF == 1 ? conc_pc + 8 : conc_pc  + 2

Equivalence checks
Precondition: 
1. SYMX_ZF = SYML_ZF

Assert:
1. RIP summary = PC summary 
2. RIP summary = Current Block summary

SITV: Jump 



During Compositional Lifting, the conc_pc value need to be fixed 
using the actual value of PC w.r.t the program context

Compositional Lifting: Jump



SITV: Data Access Instructions

movq 0x602040, %

❑ During SITV, w/o full program context, we can only validate the fact 
whether the constant 0x602040 (which could potentially be an 
address) is correctly moved to the destination register. 

❑ However, we tested  both the behaviors. 



Repeat Instruction Validation

❑ We symbolically executing those instruction with symbolic input 
state and comparing the summaries (using solver checks) of any 
single ith iteration of the two loops. 

❑ Moreover, such loops are bounded by a constant thus must 
terminate. 

❑ Equivalence check is preconditioned on the fact that the register 
or memory value, corresponding to the loop trip count, are 
asserted to be equivalent.



Simulation Testing Based Approaches 
Path-exploration lifting: Hi-fi tests for Lo-fi emulators, ASPLOS’12 

by Martignoni et al.

❑ Symbolic execution of a Hi-Fi emulator to generate test-cases to validate 
a Lo-Fi emulator

❑ Hardware co-simulation testing of Lo-Fi emulator using generated test-
cases

❑ Tested single instruction as opposed to multiple-instruction sequences
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Formal Method Based Approaches 
Testing Intermediate Representations for Binary Analysis, ASE’17 

by Kim et al.

❑ Differential testing of three binary lifters  ̶ BAP, BINSEC, and PyVEX

❑ Translated the respective IRs to a common representation to be 
compared using SAT solver

❑ Ignored instructions whose semantics are not “explicitly” exposed in IR

❑ Tested single instruction as opposed to multiple-instruction sequences
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Formal Method Based Approaches 

Towards verified binary raising, SpISA’19 by John et al.

❑ Validates the translation of basic-blocks in isolation

❑ Assisted by various manually written annotations, which are prone to 
errors
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Matcher
Inputs: T: McSema-lifted IR.

T ′ : Compositional Lifter lifted IR.
Output: true → T & T ′ semantically equivalent   

false → T & T ′ may-be non-equivalent

foreach corresponding function pair (F,F ′ ) in (T, T ′ ) do
FN = Normalizer(F)
F’N = Normalizer(F’)

GN = DataDependenceGraph(FN)
G’N = DataDependenceGraph(F’N)

if not IsGraphIsomorphic*(GN, G’N)
// A potential bug in McSema while lifting

return false
end

end
return true



Subgraph 
Isomorphism

A graph is subgraph isomorphic to 
another if the first graph matches a 
subgraph of the second structurally and 
semantically. 



Co-inductive Reasoning
int s = 0; int n = N;
while (n > 0) { s = s + n; n = n - 1; }
return s;

Spec1:- Main Configuration
Pre-condition: 
1. s = 0 
2. n = N 
3. 0 ≤ N < 232

4. 0 ≤ N(N+1)/2 < 232

Post-condition: 
1. s = N(N+1)/2
2. n = 0 

Spec2:- Loop Invariant
Pre-condition: 
1. s = B 
2. n = A 
3. 0 ≤ A < 232

4. 0 ≤ B < 232

5. 0 ≤ B + A(A+1)/2 < 232

Post-condition: 
1. s = B + A(A+1)/2
2. n = 0 



Proving Spec1 assuming Spec2 is met

Code
int s = 0; int n = N;
L1: while (n > 0) { 

s = s + n; 
n = n - 1; 
}

L:
return s;

Spec1:- Main Configuration
(To Be Proved)

Pre-condition (PREC1): 
1. s = 0 
2. n = N 
3. 0 ≤ N < 232

4. 0 ≤ N(N+1)/2 < 232

Post-condition (POSTC1): 
1. s = N(N+1)/2
2. n = 0 

Spec2:- Loop Invariant
(Assumed True)

Pre-condition (PREC2): 
1. s = B 
2. n = A 
3. 0 ≤ A < 232

4. 0 ≤ B < 232

5. 0 ≤ B + A(A+1)/2 < 232

Post-condition: 
1. s = B + A(A+1)/2
2. n = 0 

Prove Steps

1. Start with s = 0 and n = N s.t.
0 ≤ N < 232

2. Sym-exec till loop header L1
3. Summary till that point: n = 

N & s = 0 ⇒ 𝐏𝐑𝐄𝐂𝟐 as 
PREC1 is true.

4. Using induction, s = 0 + 
N(N+1)/2 and n = 0 ⇒
POSTC1

5. Spec1 is met



Proving Spec2 assuming Spec1 is met

int s = 0; int n = N;
L1: while (n > 0) { 

s = s + n; 
n = n - 1; 
}

L:
return s;

Spec1:- Main Configuration
(Assumed True)

Pre-condition: 
1. s = 0 
2. n = N 
3. 0 ≤ N < 232

4. 0 ≤ N(N+1)/2 < 232

Post-condition (POSTC1): 
1. s = N(N+1)/2
2. n = 0 

Spec2:- Loop Invariant
(To be Proved)

Pre-condition (PREC2): 
1. s = B 
2. n = A 
3. 0 ≤ A < 232

4. 0 ≤ B < 232

5. 0 ≤ B + A(A+1)/2 < 232

Post-condition (POSTC2): 
1. s = B + A(A+1)/2
2. n = 0 

Steps
1. Start with s = B and n = A s.t. 0 

≤ A,B < 232 & 0 ≤ B + A(A+1)/2 
< 232

2. If A ≤ 0
1. A = 0 (since 0 ≤ A,B < 232) 
2. Sym-ex till L gives n = 0 

and s = B ⇒ POSTC2
3. If A > 0

1. sym-exec one-loop iteration 
till L1 gives n’ = A-1 and s’ 
= B + A ⇒ PREC2 as A > 0 
⇒ A – 1 ≥ 0 and 0 ≤ B + 
A(A+1)/2 < 232 ⇒ 0 ≤ B +A 
< 232

2. Using Induction: n’’ = B+A 
+ (A-1)A/2 = B+A(A+1)/2 
and n’’ = 0 ⇒ POSTC2

4. Spec2 is met



Extension to Other Lifters
Can be extended to other lifters, provided

1. Formal semantics of ISA and target language are available.
2. Target language amenable to normalization using semantics-preserving 

transformations.

Engineering effort
❑ SITV can be applied as is as long as (1) is satisfied
❑ PLV has three components
▪ Compositional Lifting: The “glue code” that the Compositional lifter 

uses for lifting is specific the lifter (under test) and hence need to be 
discovered for each new lifter.  

▪ Normalization: Needs (2) to be satisfied
▪ Matcher: Can be applied as is 



Future Work

❑ Formally verifying Normalizer

❑ Efficient matching 
▪ e.g., based on iteratively pruning the matched sub-graphs and look for 

more isomorphic matches after normalizing the residual graph

❑ Efficient  Autotuning



define … @someFunction (%struct.State* %S, …) {

%RAX = getelementptr ... %S, …;  Compute simulated RAX address
%RBX = getelementptr ...  %S, …;  Compute simulated RBX address
%RCX = getelementptr ...  %S, …; Compute simulated RCX address

; mov 0x60f238, %rax
%VAL_MEM = load i64, i64* %GLOBL
store i64 %VAL_MEM, i64* %RAX

; addq %rax, %rbx
%VAL_RBX = load i64, i64* %RBX
%VAL_RAX = load i64, i64* %RAX
%X = add i64 %VAL_RAX, i64 %VAL_RBX
store i64 %X, i64* %RBX

}

.data
0x60f238: <GLOBL>
…
.text
someFunction:
addq %rax, %rbx
movq 0x60f238, %rax

Lifted IR Program, T

SITV

Binary Program (P)
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Compositional
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Matcher Results, M

M == equiv
YNPotential 

Bug

T & T’
semantically 
equivalent



Phase II: PLV
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Phase I: SIV
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A Few Reported Bugs
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Intel Manual Vol. 2: May 2019

Stoke Implementation May 2018

[31:0]);
[63:32]);
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Our Contribution

We defined the most complete and thoroughly tested
formal semantics of user-level x86-64 ISA

❑ Most complete user-level support (3155 instruction variants)

❑ Thoroughly tested against hardware using 7000+ input states 

and GCC-c torture tests 

❑ Found bugs in Intel manual and related projects

❑ Demonstrated applicability to formal reasoning

github.com/kframework/X86-64-semantics


