
1

Scalable Validation of Binary Lifters

Ph.D. Final Exam Talk
by

Sandeep Dasgupta
advised by

Prof. Vikram Adve

Binary Analysis is Important

The ability to directly reason about binary is important

scenarios where binary analysis is useful

❑Missing source code (e.g. legacy or malware)

❑ Avoids trusting compilers

❑ Avoids separate abstractions for library code

2

A General Approach for Binary
Analysis

DisassemblerBinary
Code

High-
Level IR

3

Assembly
Code

Lifter
Post-Lifter

Actions

Recover high-level primitives
• Instructions
• Control-flow graphs
• Functions boundaries

Enable re-targetability
to multiple ISAs.

• Recovery of types,
variables, and
function prototypes

• Re-target or re-opt
for different ISAs

• Binary Patching

Lifting is Challenging

4

Manual encoding the effects of binary instructions is hard

❑ Vast number of instructions

❑ Standard manuals are often ambiguous, buggy, include
divergence in the behaviours of variants

❑ Lack of formal operational ISA specifications (in general)

Lifting is Pivotal in Binary Analysis

5

Validation of Lifting is Critical

6

Faithful binary translation strengthens trust in binary analysis results

Thesis Statement

To develop formal and informal techniques to achieve high
confidence in the correctness of binary lifting, from a complex

machine ISA (e.g., x86-64) to a rich IR (e.g., LLVM IR), by
leveraging the semantics of languages involved (e.g., x86-64 and

LLVM IR)

7

Summary of Prior Work

8

Require random
testing

• Martignoni et al.
ISSTA’10

• Chen et al. CLSS’15

Restricted to
instruction- or basic-
block-level validation

▪Martignoni et al.
ISSTA’10, ASPLOS’12

▪ Chen et al. CLSS’15

▪Meandiff - Kim et al.
ASE’17

Require
instrumentation

▪ Reopt-vcg, John et
al. SpISA’19

Scope of the work

9

Validating the translation from x86-64 programs to LLVM IR using
McSema - a mature, active maintained, and open-source lifter

Our Approach: Intuition

10

Most binary lifters are designed to perform simple instruction-by-
instruction lifting followed by standard IR optimizations to achieve simpler

IR code

Formal translation validation of single machine instructions can be used as
a building block for scalable full-program validation

Observation

Intuition

Our Two-Phase Approach

11

Phase I Single-Instruction Translation-Validation (SITV)

❖ Translation-validation of lifted instructions in isolation

❖ Leverages our prior work on formalizing x86-64 semantics

Phase II Program-level Validation (PLV)

❖ A scalable approach for full-program validation build on SITV

❖ Cheaper than symbolic-execution based equivalence checking

Contributions

12

❑ Defining the formal Semantics of x86-64 (PLDI’19)
▪ Most Complete user-level instruction semantics
▪ Faithful up to through testing
▪ Revealed Bugs in Intel Manual and related semantics
▪ Useful for various formal analyses

❑ Developing scalable technique for validating lifters (PLDI’20)
▪ First SIV framework for an extensive x86-64 ISA
▪ Revealed Bugs in a mature lifter like McSema
▪ Novel Technique for SITV-assisted full-program validation

Defining Formal Semantics of
x86-64 ISA

13

Challenges: from ISA Spec to Semantics

14

❑ 3000+ pages of informal description

❑ 996 unique mnemonics with 3736 variants

❑ Inconsistent behavior of variants

Scope of Work (3155 / 3736)

15

• General

• FC16

• FMA

• AVX2

• AVX

• SSE

Supported

(3155)

16

Approach Overview

17

* BVL: Bit-vector logic

Approach Overview

Strata BVL*
semantics

60% in

scope

Modeling
Unsupported

artifacts

Validating
semantics of

instruction-variants

18

* BVL: Bit-vector logic

Approach Overview

Strata BVL*
semantics

60% in

scope

augmented
&

corrected

semantics

19

Formula
simplification **

count reduction

* BVL: Bit-vector logic

** 30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms

Approach Overview

Strata BVL*
semantics

60% in

scope

augmented
&

corrected

semantics

simplified
semantics

Modeling
Unsupported

artifacts

Validating
semantics of

instruction-variants

20

Formula
simplification **

count reduction

BVL → K translator

* BVL: Bit-vector logic

** 30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms

Approach Overview

semantics
in K

Strata BVL*
semantics

60% in

scope

augmented
&

corrected

semantics

simplified
semantics

Modeling
Unsupported

artifacts

Validating
semantics of

instruction-variants

21

Formula
simplification **

count reduction

BVL → K translator

* BVL: Bit-vector logic

** 30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms

Approach Overview

Validation

SMT

Formula

SMT

Formula

semantics
in K

Strata BVL*
semantics

60% in

scope

augmented
&

corrected

semantics

simplified
semantics

Modeling
Unsupported

artifacts

Validating
semantics of

instruction-variants

22

Formula
simplification **

count reduction

BVL → K translator

* BVL: Bit-vector logic

** 30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms

Approach Overview

Manually translation

Intel
informal

spec

40% in

scope

semantics
in K

Strata BVL*
semantics

60% in

scope

augmented
&

corrected

semantics

simplified
semantics

Modeling
Unsupported

artifacts

Validating
semantics of

instruction-variants

Support Comparison

23

100

33

54
49

12

89

100

12 0 0 0 0
0

20

40

60

80

100

120

Ideal Goel et al. Strata Roessle et al. SAIL Current Work

%
 o

f
in

st
ru

c
ti
o

n
s

c
o

v
e

re
d

Projects hosting x86-64 ISA semantics. “Ideal” serves as a hypothetical baseline

supporting all user-level and system-level instructions

User-level System-level

#user-level: ~3536

#system-level: ~200

Support Comparison

24

100

33

54
49

12

89

100

12 0 0 0 0
0

20

40

60

80

100

120

Ideal Goel at al. Strata Roessle et al. SAIL Current Work

%
 o

f
in

st
ru

c
ti
o

n
s

c
o

v
e

re
d

Projects hosting x86-64 ISA semantics. “Ideal” serves as a hypothetical baseline

supporting all user-level and system-level instructions

User-level System-level

11

10% Deprecated + 1%
Crypto & Concurrency#user-level: ~3536

#system-level: ~200

Validation of Semantics

25

Comparing with
hardware

Instruction Level Testing

(7000+ inputs states)

Program Level Testing

(GCC-c torture tests)

Comparing with
Stoke

Comparing SMT
formula

12+ Bugs reported
• Intel Manual
• Strata formulas

40+ Bugs reported
In Stoke

A Few Reported Bugs

26

Intel Manual Vol. 2: May 2019

Intel Manual Vol. 2: March 2018

A Few Reported Bugs

27

Stoke Implementation May 2018

Intel Manual Vol. 2: May 2019

A Few Potential Applications

❑ Program verification

❑ Translation validation of compiler optimization

❑ Security vulnerability tracking

28

Lifter Validation: Our Approach

29

❖ Phase I Single-Instruction Translation-Validation (SITV)

❖ Phase II Program-level Validation (PLV)

Overall Goal

30

Our goal is to validate the translation from P to T

main:

Binary Program (P) Lifted IR Program (T)

bin_inst1

bin_inst2

…

bin_instn

ir_inst1

ir_inst2

…

ir_instm

define … @main(…) {

}

Lifter (D)

Single-Instruction Translation Validation

31

main:

bin_inst1

bin_inst2
…

bin_instn

Lifted
IR

Seq.

Lifted
IR

Seq.

SITV* SITV* SITV*

*SITV: Single Instruction Translation Validation Framework

Translation Validated!

,

Lifted
IR

Seq.

Translation Validated!

,

Validation Failed!
(Report Bug)

Translation Validated!

,

Validated-Instruction Store Cache

D DDbin_inst1 bin_inst2
bin_instn

Lifted
IR

Seq.

Lifted
IR

Seq.

Lifted
IR

Seq.

Binary Program (P)

Lifted IR Seq., SBinary Instr, I

SITV

32

Symbolic-execution
(using x86-64 semantics)

Symbolic-execution
(using LLVM semantics)

Symbolic-summary, sumI Symbolic-summary, sumS

Verification-condition (VC) generator

VC: assert (sumS ≠ sumI)

SMT Solver

R

Validation Failed (Report Bug)

== sat

Translation Validated!

== unsat

• Derived from semantics using K
• Not Performance heavy: Loops rarely

found in instructions’ specs

SITV: Evaluation Setup

33

Applied translation validation on 1349 out of 3736 instruction variants

❑McSema supports 1922 variants; all supported by our ISA model

❑ Exclude 573 because of limitations of LLVM semantics
e.g., unsupported vector or FP types, intrinsic functions

❑ Solver runtime: min - 0.25 s, max – 29.89 s, median – 0.46 s

Lifted IR Seq., SBinary Instr, I

SITV

34

Symbolic-execution
(using x86-64 semantics)

Symbolic-execution
(using LLVM semantics)

Symbolic-summary, sumI Symbolic-summary, sumS

Verification-condition (VC) generator

VC: assert (sumS ≠ sumI)

SMT Solver

R

Runtime
(mins)

Min: 1.7
Max: 14
Median: 8

Runtime
(mins)

Min: 1.7
Max: 3.3
Median: 3.3

Runtime
(secs)

Min: 0.25
Max: 29.89
Median: 0.46

SITV: Performance

Lifted IR Seq., SBinary Instr, I

SITV

35

Symbolic-execution
(using x86-64 semantics)

Symbolic-execution
(using LLVM semantics)

Symbolic-summary, sumI Symbolic-summary, sumS

Verification-condition (VC) generator

VC: assert (sumS ≠ sumI)

SMT Solver

R

SITV: Revealed Bugs

== sat

Validation Failed (Report Bug)

Found 29
solver failures

all
acknowledged

as bugs by
McSema

developers

SITV: A Few Reported Bugs

36

Intel Manual Vol. 2: May 2019

xaddq %rax, %rbx

(1) temp ← %rax + %rbx
(2) %rax ← %rbx
(3) %rbx ← temp

McSema Implementation

xaddq %rax, %rbx
(with same operands)

(A) old_rbx ← %rbx
(B) temp ← %rax + %rbx
(C) %rbx ← temp
(D) %rax ← old_rbx

SITV: A Few Reported Bugs

37

Intel Manual Vol. 2: May 2019

pmuludqu (128-bit operands)

(1) DEST[63:0] ← DEST[31:0] * SRC[31:0]
(2) DEST[127:64] ← DEST[63:32] * SRC[63:32]

McSema Implementation

pmuludqu (128-bit operands)

(1) DEST[63:0] ← DEST[31:0] * SRC[31:0]
(2) DEST[127:64] ← (unchanged)

SITV: A Few Reported Bugs

38

Intel Manual Vol. 2: May 2019

cmpxchgl %ecx, %ebx

TEMP ← ebx
IF eax = TEMP THEN
ZF ← 1;
ebx ← ecx;

ELSE
ZF ← 0;
eax ← TEMP;
ebx ← TEMP;

FI;

McSema Implementation

cmpxchgl %ecx, %ebx

TEMP ← rbx
IF (32’0 ◦ eax) = TEMP THEN
ZF ← 1;
ebx ← ecx;

ELSE
ZF ← 0;
eax ← TEMP;
ebx ← TEMP;

FI;

Lifter Validation: Our Approach

39

❖ Phase I Single-Instruction Translation-Validation (SITV)

❖ Phase II Program-level Validation (PLV)

SITV

define … @someFunction (%struct.State* %S, …) {

%RAX = getelementptr ... %S, …; Compute simulated RAX address
%RBX = getelementptr ... %S, …; Compute simulated RBX address
%RCX = getelementptr ... %S, …; Compute simulated RCX address

; addq %rax, %rbx
%VAL_RBX = load i64, i64* %RBX
%VAL_RAX = load i64, i64* %RAX
%X = add i64 %VAL_RAX, i64 %VAL_RBX
store i64 %X, i64* %RBX

; mov 0x60f238, %rax
%VAL_MEM = load i64, i64* %GLOBL
store i64 %VAL_MEM, i64* %RAX

}

.data
0x60f238: <GLOBL>
…
.text
someFunction:
addq %rax, %rbx
movq 0x60f238, %rax

Binary Program (P)

Lifted IR Program, T

Pre-computed
Simulated Address

define … @someFunction (%struct.State* %S, …) {

%RAX = getelementptr ... %S, …; Compute simulated RAX address
%RBX = getelementptr ... %S, …; Compute simulated RBX address
%RCX = getelementptr ... %S, …; Compute simulated RCX address

; addq %rax, %rbx
%VAL_RBX = load i64, i64* %RCX
%VAL_RAX = load i64, i64* %RAX
%X = add i64 %VAL_RAX, i64 %VAL_RBX
store i64 %X, i64* %RBX

; mov 0x60f238, %rax
%VAL_MEM = load i64, i64* %GLOBL
store i64 %VAL_MEM, i64* %RAX

}

.data
0x60f238: <GLOBL>
…
.text
someFunction:
addq %rax, %rbx
movq 0x60f238, %rax

Lifted IR Program, T

SITV

Binary Program (P)

define … @someFunction (%struct.State* %S, …) {

%RAX = getelementptr ... %S, …; Compute simulated RAX address
%RBX = getelementptr ... %S, …; Compute simulated RBX address
%RCX = getelementptr ... %S, …; Compute simulated RCX address

; addq %rax, %rbx
%VAL_RBX = load i64, i64* %RBX
%VAL_RAX = load i64, i64* %RAX
%X = add i64 %VAL_RAX, i64 %VAL_RBX
store i64 %X, i64* %RBX

; mov 0x60f238, %rax
store i64 6353464, i64* %RAX

}

.data
0x60f238: <GLOBL>
…
.text
someFunction:
addq %rax, %rbx
movq 0x60f238, %rax

Lifted IR Program, T

SITV

Binary Program (P)

PLV: Our Approach

To propose an alternate reference program, T’, generated by
carefully stitching the validated lifted IR sequences (using SITV)

❑ Transformation: Uses semantic preserving transformations to
reduce T’ and original lifted program (T) to a common form

❑Matching: Checks the data-dependence graphs of transformed
versions for graph-isomorphism

Compositional Lifting

Transformation & Matching

44

bin_inst1 bin_inst_2 bin_inst_n LIRSnLIRS2, LIRS1 , ,

Validated-Instruction Store Cache

Binary Program (P)

bin_inst1

bin_inst2

…

bin_instn

Proposed IR Program, T’

main:
define … @main(…) {

LIRS1

glue code

LIRSnLIRS2

glue code

…
glue code

}

PLV: Compositional Lifting

45

For each function F’ of T’

PLV: Normalization & Matching

define … @main(…) {
glue code

glue code

…
glue code

}

LIRS1

LIRS2

LIRSn

For each function F of T

ir_inst1

ir_inst2

…
ir_instm

define … @main(…) {

} FN

F’N

Data-Dependence Graph, GN

Data-Dependence Graph, G’N

Matcher
Are G & G’N

isomorphic?

T & T’
semantically

equivalent

Potential
Bug in Lifter

Normalizer
(LLVM passes)

Normalizer
(LLVM passes) Vertex:

LLVM instruction
Edge:
SSA def-use or memory
dependence relation

46

PLV: Extra Diagram

define … @main(…) {
glue code

glue code

…
glue code

}

LIRS1

LIRS2

LIRSn

For each function F of T

someFunc:

…

400494: mov %edi,-0x8(%rbp)
400497: cmpl $0x1,-0x8(%rbp)
40049b: jge 4004ad
4004a1: movl $0x1,-0x4(%rbp)
4004a8: jmpq 4004b4
4004ad: movl $0x0,-0x4(%rbp)

…

Compositional Lifter: Algorithm
Inputs : P: x86-64 binary program.

Store: Validated pairs (<I, S>) of instruction I and lifted IR sequence S (possibly empty)
Output: Lifted IR Program T’

T’ ← φ
foreach I in P do

if I not in Store then
S ← McSema (I)
Perform Translation Validation of I and S (Phase I)
if Validation successful then

Add < I , S > to Store Cache
else

Report Bug
end

else
Extract S from Store Cache corresponding to I

end
T’ ← Compose(T’ , S)

end

return T’

Could be done offline !

SITV

Performance depends
heavily on the availability of
instructions in Store Cache

SITV

Very simple in design, however,

No formal guarantee that T’
is the correct translation of P

PLV can be done prior to
SITV

Compositional Lifter: Evaluation
Evaluated on 2348 binaries compiled from LLVM single-source
benchmark functions

0 1 0 11 15
38

74

186

1072

950

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

te
st

s-
fu

n
ct

io
n

s

Percentage of Instructions Reused

Runtime
(secs)

Min: 0.06
Max: 5.75
Median: 0.63

Normalizer

❑ Prunes-off syntactic differences between T & T’ except for
▪ Names of virtual registers, and
▪ Order of non-dependent instructions

❑ Uses 17 LLVM optimizations passes (manually discovered)

mem2reg licm gvn early-cse globalopt simplifycfg
basicaa aa memdep dse deadargelim libcalls-shrinkwrap tailcallelim

simplifycfg basicaa aa instcombine

Optimization passes
NOT formally-verified

Matcher: Iso-Graph Algorithm
(Borrowed from Saltz at al.*)

1. Finding 𝛟, Initial Match Set, 𝐎(𝐧𝟐): For each node n of G,
find all potential matches n’ in G’

2. Iterative Step: Iteratively prunes out elements from ϕ of
each vertex based on its parents/child relations until fixed-
point is reached

Time: O(n2 x | 𝛟 |) and | 𝛟 | = O(n)

*An Algorithm for Subgraph Pattern Matching on Large Labeled Graphs, IEEE International Congress on Big Data’14

Matcher: Iso-Graph Algorithm
(Borrowed from Saltz at al.*)

1. Finding 𝛟, Initial Match Set: For each node n of G, find all
potential matches n’ in G’

2. Iterative Step: Iteratively prunes out elements from ϕ of
each vertex based on its parents/child relations until fixed-
point is reached

*An Algorithm for Subgraph Pattern Matching on Large Labeled Graphs, IEEE International Congress on Big Data’14

Constraining : Our Approach

1. Finding 𝛟, Initial Match Set: For each node n of G, find all
nodes n’ in G’ s.t n & n’ satisfies
• Same instruction opcode
• Same constant operands
• Same number of outgoing edges

| 𝛟 | << n
Improves the complexity of iterative step

Matcher: Evaluation

❑ Run Matcher on 2348 LLVM single-source benchmark functions
▪ Runtime: ranges from 0.06s − 119.63s, median - 4.91s

❑ Proved correctness of 2189 /2348 translations; success rate - 93%
▪ LOC of lifted IR: ranges from 86 − 32105, median - 611
▪ Remaining 159 manually inspected as false negatives; rate - 7%

❑ No real bugs found: Effectiveness evaluated using artificially
injected bugs

Normalizer: Phase Ordering Problem

❑ Changing the order of normalizer passes improves matching
results

❑ Not all of 17 passes are needed for every pair of functions

To frame the problem of selecting the normalizing pass
sequence as an application of pass-sequence autotuning

Observation

Intuition

Autotuning Based Normalizer

Instead of using a fixed-length normalizer pass-sequence for all
function pairs, we will use an autotuner to find optimal pass-

sequences one for each function pair

Autotuning Based Normalizer

Used OpenTuner* framework for autotuning

▪ Search Space: Includes passes from the 17-length pass sequence

▪ Objective Function: Maximize

n = number of vertices in G
t = number of nodes in G having non-empty ϕ

* OpenTuner: An Extensible Framework for Program Autotuning, PACT’14

Autotuning Pipleline
Inputs: F, F’ : Function pair compared for equivalence

S : Autotuner Search Space
B : Resource Budget
C : Objective-Function

Output: Set of candidate normalization passes satisfying C within B

candidate-passes = φ
while(B not exhausted)

t = Autotuner-Search(S)
FN = Normalizer(F, t)
F’N = Normalizer(F’, t)

if check-objective-function-is-met(C, GN, G’N)
candidate-passes = candidate-passes U t

end
return candidate-passes

Improved Matcher Pipeline
Inputs: F, F’: Function pair compared for equivalence

candidate-passes: Autotuner generated candidate pass sequences
Output: true → F & F ′ semantically equivalent

false → F & F ′ may-be non-equivalent

foreach t in candidate-passes do
FN = Normalizer(F, t)
F’N = Normalizer(F’, t)

if IsGraphIsomorphic(GN, G’N)
return true

end
end
return false

Autotuning Based Normalizer: Results

❑ Opentuner runtime range from 10.7 s - 19.97 m, median - 6.67 m

❑ Reduces false-alarm rate from 7% to 4%

❑ Length of autotuned-pass-sequence: median - 7, mean – 8 (< 17 !)

Summary
❑ Validation of lifters w/o instrumentation or heavyweight

equivalence checking is feasible

❑ Capitalized on a simple insight
Formal translation validation of single machine instructions is not only practical

but also can be used as a building block for scalable full-program validation

❑ SITV valuable in finding real bugs in a mature lifter

❑ Proposed scalable full-program validation approach leveraging SITV

Backup

61

Questions

• Matcher soundness ??
• Compd not formalized?
• Matcher False negatives? More structer graph iso?
• Control flow violations?

• Examples of Binary Analysis?
• Different ways of doing binary analysis?
• Detail about cmpxchg? Why max time?

• Halide Paper?
• Add more Appl, Bug in x86-64 sema, SIV Bugs

• Outline
• Shake

62

Security Vulnerability Tacking

63

uintptr_t safe_addptr (int *of, uint64_t a, uint64_t b)
{

uintptr_t r = a + b;

if (r < a) // Condition not sufficient to prevent

// overflow in case of 32-bit compilation

*of = 1;
return r ;

}

Code snippet borrowed from HiStar kernelOSDI’06, in which KLEEOSDI’08 found a security vulnerability

uintptr_t r = a + b
r < a

*of =1

return r

// Overflow not detected
// Overflow detected

Security Vulnerability Tacking

64

Use symbolic-execution to find an
input (a,b) such thatuintptr_t r = a + b

r < a

*of =1

return r

// Overflow not detected
// Overflow detected

Security Vulnerability Tacking

65

Use symbolic-execution to find an
input (a,b) such that

No overflow detected
i.e. (a + b mod 2 ^ 32) ≥ a

uintptr_t r = a + b
r < a

*of =1

return r

// Overflow not detected
// Overflow detected

Security Vulnerability Tacking

66

Use symbolic-execution to find an
input (a,b) such that

Overflow occurs
i.e. a + b ≥ 2^32

And

uintptr_t r = a + b
r < a

*of =1

return r

// Overflow not detected
// Overflow detected

No overflow detected
i.e. (a + b mod 2 ^ 32) ≥ a

Limitations

❑ Incomplete LLVM Semantics

❑ Normalizer not formally-verified

• BV[I:J] ∘ BV[J:K] → BV[I:K]

• BV[0 : bitwidth(BV)-1] → BV

• (BV1[0:63] ∘ BV2[0:63])[0:31] → BV2[0:31]

• (BV1[0:63] ∘ BV2[0:63])[64:96] → BV1[0:31]

• (BV1[0:63] ∘ BV2[0:63])[32:96] → (BV1[0:31] ∘ BV2[32:63])

• (BV[32:63])[0:8] → BV[32:39]

• (BV1 boolOp BV2)[I:J] → BV1[I:J] & BV2[I:J]

• (cond ? BV1:BV2)[I:J] → (cond ? BV1[I:J]:BV2[I:J])

• BV ∘ (cond ? BV2 : BV3) → (cond ? BV ∘ BV1: BV ∘ BV2)

• (cond ? BV1 : BV2) binOp (cond ? BV3 : BV4) → (cond ? BV1 binOp BV3
: BV2 binOp BV4)

• add_double(A, 0) → A if MSB of A is 0 /* To avoid A being -0.0 */

Simplification Rules

68

Sound transpilation from binary to
machine-independent code, Roberto et al. SBMF 2017

❑ Formally modeled BIL IR in the interactive theorem prover HOL4

❑ Implemented a verified transpiler for ARMv8 programs to BIL IR

❑ Handling other machine architectures (e.g. x86, x64 MIPS) require
developing new transpilers

❑ Verified transpilation of an instruction takes ∼ 9 s
❑ Evaluated on few examples; Biggest ones are
▪ bignum library function with 141 Arm instructions → 907 lines of BIL
▪ AES functions with 535 Arm instructions → 3920 lines of BIL

Why LLVM is Pervasively as Lifted IR

❑ Mature symbolic Analysis tools like KLEE
❑ Industry standard optimization passes used for re-optimzation and

re-targeting
❑ Clang LibTooling for efficient instrumentation
❑ Decompilers like llvm-mctoll* makes heavy use of LLVM

compilation pileline

* Aaron Smith and S. Bharadwaj Yadavalli. 2018. LLVM Based Binary Raiser: llvm-mctoll

Matching Results: Spec2006

❑ Out of total 3870 functions, success rate is 60%
❑ Working on the 40% failure cases (potential false negatives)

* Aaron Smith and S. Bharadwaj Yadavalli. 2018. LLVM Based Binary Raiser: llvm-mctoll

conc_pc: jz 8
(conc_pc is the concrete value of PC for current instruction in isolation)

X86-64 Semantics
RIP = conc_pc
RIP summary: SYMX_ZF ==1 ? conc_pc + 8 : conc_pc + 2

LLVM Semantics
PC = conc_pc
PC summary: SYML_ZF ==1? conc_pc + 8 : conc_pc + 2
Current Block summary: SYML_ZF == 1 ? conc_pc + 8 : conc_pc + 2

Equivalence checks
Precondition:
1. SYMX_ZF = SYML_ZF

Assert:
1. RIP summary = PC summary
2. RIP summary = Current Block summary

SITV: Jump

During Compositional Lifting, the conc_pc value need to be fixed
using the actual value of PC w.r.t the program context

Compositional Lifting: Jump

SITV: Data Access Instructions

movq 0x602040, %

❑ During SITV, w/o full program context, we can only validate the fact
whether the constant 0x602040 (which could potentially be an
address) is correctly moved to the destination register.

❑ However, we tested both the behaviors.

Repeat Instruction Validation

❑ We symbolically executing those instruction with symbolic input
state and comparing the summaries (using solver checks) of any
single ith iteration of the two loops.

❑ Moreover, such loops are bounded by a constant thus must
terminate.

❑ Equivalence check is preconditioned on the fact that the register
or memory value, corresponding to the loop trip count, are
asserted to be equivalent.

Simulation Testing Based Approaches
Path-exploration lifting: Hi-fi tests for Lo-fi emulators, ASPLOS’12

by Martignoni et al.

❑ Symbolic execution of a Hi-Fi emulator to generate test-cases to validate
a Lo-Fi emulator

❑ Hardware co-simulation testing of Lo-Fi emulator using generated test-
cases

❑ Tested single instruction as opposed to multiple-instruction sequences

76

Formal Method Based Approaches
Testing Intermediate Representations for Binary Analysis, ASE’17

by Kim et al.

❑ Differential testing of three binary lifters ̶ BAP, BINSEC, and PyVEX

❑ Translated the respective IRs to a common representation to be
compared using SAT solver

❑ Ignored instructions whose semantics are not “explicitly” exposed in IR

❑ Tested single instruction as opposed to multiple-instruction sequences

77

Formal Method Based Approaches

Towards verified binary raising, SpISA’19 by John et al.

❑ Validates the translation of basic-blocks in isolation

❑ Assisted by various manually written annotations, which are prone to
errors

78

Matcher
Inputs: T: McSema-lifted IR.

T ′ : Compositional Lifter lifted IR.
Output: true → T & T ′ semantically equivalent

false → T & T ′ may-be non-equivalent

foreach corresponding function pair (F,F ′) in (T, T ′) do
FN = Normalizer(F)
F’N = Normalizer(F’)

GN = DataDependenceGraph(FN)
G’N = DataDependenceGraph(F’N)

if not IsGraphIsomorphic*(GN, G’N)
// A potential bug in McSema while lifting

return false
end

end
return true

Subgraph
Isomorphism

A graph is subgraph isomorphic to
another if the first graph matches a
subgraph of the second structurally and
semantically.

Co-inductive Reasoning
int s = 0; int n = N;
while (n > 0) { s = s + n; n = n - 1; }
return s;

Spec1:- Main Configuration
Pre-condition:
1. s = 0
2. n = N
3. 0 ≤ N < 232

4. 0 ≤ N(N+1)/2 < 232

Post-condition:
1. s = N(N+1)/2
2. n = 0

Spec2:- Loop Invariant
Pre-condition:
1. s = B
2. n = A
3. 0 ≤ A < 232

4. 0 ≤ B < 232

5. 0 ≤ B + A(A+1)/2 < 232

Post-condition:
1. s = B + A(A+1)/2
2. n = 0

Proving Spec1 assuming Spec2 is met

Code
int s = 0; int n = N;
L1: while (n > 0) {

s = s + n;
n = n - 1;
}

L:
return s;

Spec1:- Main Configuration
(To Be Proved)

Pre-condition (PREC1):
1. s = 0
2. n = N
3. 0 ≤ N < 232

4. 0 ≤ N(N+1)/2 < 232

Post-condition (POSTC1):
1. s = N(N+1)/2
2. n = 0

Spec2:- Loop Invariant
(Assumed True)

Pre-condition (PREC2):
1. s = B
2. n = A
3. 0 ≤ A < 232

4. 0 ≤ B < 232

5. 0 ≤ B + A(A+1)/2 < 232

Post-condition:
1. s = B + A(A+1)/2
2. n = 0

Prove Steps

1. Start with s = 0 and n = N s.t.
0 ≤ N < 232

2. Sym-exec till loop header L1
3. Summary till that point: n =

N & s = 0 ⇒ 𝐏𝐑𝐄𝐂𝟐 as
PREC1 is true.

4. Using induction, s = 0 +
N(N+1)/2 and n = 0 ⇒
POSTC1

5. Spec1 is met

Proving Spec2 assuming Spec1 is met

int s = 0; int n = N;
L1: while (n > 0) {

s = s + n;
n = n - 1;
}

L:
return s;

Spec1:- Main Configuration
(Assumed True)

Pre-condition:
1. s = 0
2. n = N
3. 0 ≤ N < 232

4. 0 ≤ N(N+1)/2 < 232

Post-condition (POSTC1):
1. s = N(N+1)/2
2. n = 0

Spec2:- Loop Invariant
(To be Proved)

Pre-condition (PREC2):
1. s = B
2. n = A
3. 0 ≤ A < 232

4. 0 ≤ B < 232

5. 0 ≤ B + A(A+1)/2 < 232

Post-condition (POSTC2):
1. s = B + A(A+1)/2
2. n = 0

Steps
1. Start with s = B and n = A s.t. 0

≤ A,B < 232 & 0 ≤ B + A(A+1)/2
< 232

2. If A ≤ 0
1. A = 0 (since 0 ≤ A,B < 232)
2. Sym-ex till L gives n = 0

and s = B ⇒ POSTC2
3. If A > 0

1. sym-exec one-loop iteration
till L1 gives n’ = A-1 and s’
= B + A ⇒ PREC2 as A > 0
⇒ A – 1 ≥ 0 and 0 ≤ B +
A(A+1)/2 < 232 ⇒ 0 ≤ B +A
< 232

2. Using Induction: n’’ = B+A
+ (A-1)A/2 = B+A(A+1)/2
and n’’ = 0 ⇒ POSTC2

4. Spec2 is met

Extension to Other Lifters
Can be extended to other lifters, provided

1. Formal semantics of ISA and target language are available.
2. Target language amenable to normalization using semantics-preserving

transformations.

Engineering effort
❑ SITV can be applied as is as long as (1) is satisfied
❑ PLV has three components
▪ Compositional Lifting: The “glue code” that the Compositional lifter

uses for lifting is specific the lifter (under test) and hence need to be
discovered for each new lifter.

▪ Normalization: Needs (2) to be satisfied
▪ Matcher: Can be applied as is

Future Work

❑ Formally verifying Normalizer

❑ Efficient matching
▪ e.g., based on iteratively pruning the matched sub-graphs and look for

more isomorphic matches after normalizing the residual graph

❑ Efficient Autotuning

define … @someFunction (%struct.State* %S, …) {

%RAX = getelementptr ... %S, …; Compute simulated RAX address
%RBX = getelementptr ... %S, …; Compute simulated RBX address
%RCX = getelementptr ... %S, …; Compute simulated RCX address

; mov 0x60f238, %rax
%VAL_MEM = load i64, i64* %GLOBL
store i64 %VAL_MEM, i64* %RAX

; addq %rax, %rbx
%VAL_RBX = load i64, i64* %RBX
%VAL_RAX = load i64, i64* %RAX
%X = add i64 %VAL_RAX, i64 %VAL_RBX
store i64 %X, i64* %RBX

}

.data
0x60f238: <GLOBL>
…
.text
someFunction:
addq %rax, %rbx
movq 0x60f238, %rax

Lifted IR Program, T

SITV

Binary Program (P)

87

X86-64 Instruction,

Lifter, D
(under test)

IR Sequence, S

Symbolic Ex.
(x86-64 semantics)

Symbolic Ex.
(LLVM semantics)

sumI sumS

VC Generator

VC: assert (sumS ≠ sumI)

SMT Solver

Translation Validated!
(Cache I,S)

Validated
Instruction Store

Validation Failed
(Report Bug)

Proposed IR, T’

Normalized IR, N’

Compositional
Lifter

Normalizer

X86-64 Program, P

Lifter, D
(under test)

Lifted IR, T

Normalizer

Normalized IR, N

Matcher
(based on graph-isomorphism)

Matcher Results, M

M == equiv
YNPotential

Bug

T & T’
semantically
equivalent

Phase II: PLV

88

X86-64 Instruction,

Lifter, D
(under test)

IR Sequence, S

Symbolic Ex.
(x86-64 semantics)

Symbolic Ex.
(LLVM semantics)

sumI sumS

VC Generator

VC: assert (sumS ≠ sumI)

SMT Solver

Translation Validated!
(Cache I,S)

Validated
Instruction Store

Validation Failed
(Report Bug)

Proposed IR, T’

Normalized IR, N’

Compositional
Lifter

Normalizer

X86-64 Program, P

Lifter, D
(under test)

Lifted IR, T

Normalizer

Normalized IR, N

Matcher
(based on graph-isomorphism)

Matcher Results, M

M == equiv
YNPotential

Bug

T & T’
semantically
equivalent

Phase II: PLV

89

X86-64 Instruction,

Lifter, D
(under test)

IR Sequence, S

Symbolic Ex.
(x86-64 semantics)

Symbolic Ex.
(LLVM semantics)

sumI sumS

VC Generator

VC: assert (sumS ≠ sumI)

SMT Solver

Translation Validated!
(Cache I,S)

Validated
Instruction Store

Validation Failed
(Report Bug)

Proposed IR, T’

Normalized IR, N’

Compositional
Lifter

Normalizer

X86-64 Program, P

Lifter, D
(under test)

Lifted IR, T

Normalizer

Normalized IR, N

Matcher
(based on graph-isomorphism)

Matcher Results, M

M == equiv
YNPotential

Bug

T & T’
semantically
equivalent

Phase I: SIV

90

X86-64 Instruction,

Lifter, D
(under test)

IR Sequence, S

Symbolic Ex.
(x86-64 semantics)

Symbolic Ex.
(LLVM semantics)

sumI sumS

VC Generator

VC: assert (sumS ≠ sumI)

SMT Solver

Translation Validated!
(Cache I,S)

Validated
Instruction Store

Validation Failed
(Report Bug)

A Few Reported Bugs

92

Intel Manual Vol. 2: May 2019

Stoke Implementation May 2018

[31:0]);
[63:32]);

Our Contribution

We defined the most complete and thoroughly tested
formal semantics of user-level x86-64 ISA

github.com/kframework/X86-64-semantics

Our Contribution

We defined the most complete and thoroughly tested
formal semantics of user-level x86-64 ISA

❑ Most complete user-level support (3155 instruction variants)

github.com/kframework/X86-64-semantics

Our Contribution

We defined the most complete and thoroughly tested
formal semantics of user-level x86-64 ISA

❑ Most complete user-level support (3155 instruction variants)

❑ Thoroughly tested against hardware using 7000+ input states

and GCC-c torture tests

github.com/kframework/X86-64-semantics

Our Contribution

We defined the most complete and thoroughly tested
formal semantics of user-level x86-64 ISA

❑ Most complete user-level support (3155 instruction variants)

❑ Thoroughly tested against hardware using 7000+ input states

and GCC-c torture tests

❑ Found bugs in Intel manual and related projects

github.com/kframework/X86-64-semantics

Our Contribution

We defined the most complete and thoroughly tested
formal semantics of user-level x86-64 ISA

❑ Most complete user-level support (3155 instruction variants)

❑ Thoroughly tested against hardware using 7000+ input states

and GCC-c torture tests

❑ Found bugs in Intel manual and related projects

❑ Demonstrated applicability to formal reasoning

github.com/kframework/X86-64-semantics

