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Abstract We present a static shape analysis technique to
infer the shapes of the heap structures created by a program
at run time. Our technique is field sensitive in that it uses field
information to compute the shapes. The shapes of the heap
structures are computed using two components: (a) Boolean
functions that capture the shape transitions due to the update
of a field in a structure, and (b) through path matrices that
store approximate path information between two pointer vari-
ables. We classify the shapes as one of Tree, Directed Acyclic
Graph (DAG) and Cycle. The novelty of our approach lies
in the way we use field information to remember the fields
that cause a heap structure to have a particular shape (Tree,
DAG or Cycle). This allows us to easily identify the field
updates that cause shape transitions from Cycle to DAG, from
Cycle to Tree and from DAG to Tree. This makes our analy-
sis more precise as compared to earlier shape analyses that
ignore the fields participating in the formation of a shape. We
implemented our analysis in GCC as a dynamic plug-in as an
interprocedural data-flow analysis and evaluated it on some
standard benchmarks against a field-insensitive shape analy-
sis technique as a baseline approach. We are able to achieve
significant precision as compared to the baseline analysis (at
the cost of increase in analysis time). In particular, we are able
to infer more precise shapes for 4 out 7 Olden benchmarks,
and never detect more cycles than the baseline analysis. We
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further suggest enhancements to improve the precision of our
analysis under some constraints and to improve the analysis
time at the cost of precision.
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1 Introduction

Hardware and software revolutions in past few years have
brought in two significant challenges: (a) High performance
computing is now accessible to end users (scientists and engi-
neers) in the forms of multi-core and GPU processors at a
very low cost. However, these end users, who are domain
experts, find it difficult to acquire expertise to take advantage
of the compute power available at their disposal. As a result,
the compute power remains significantly underutilized. The
tasks of helping programmers “think parallel” and provid-
ing them with working parallel environment are considered
the top challenges in parallel computing research [21,28].
(b) The cost of failure of software is increasing with the
growing complexity of software. The cost of software fail-
ure was estimated to be USD 6.18 Trillion in the year 2009
[26]. Therefore, it is becoming more and more important
to verify the correctness of a software program before its
deployment. The complexity of hardware and software sys-
tems requires that the solutions to the above challenges have
to be automated. We need parallelizing compilers that can
automatically convert sequential programs to parallel one,
and verifying compilers that can prove the correctness of
programs.

Programs in all modern programming languages use
heap intensively. Any non-trivial analysis of these programs
requires precise reasoning about the heap structures. The
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80 S. Dasgupta et al.

reasoning is complex because the heap structures are not
static but are manipulated dynamically during the execution
of the program. Shape analysis is the term for the class of
static analysis techniques that are used to infer useful prop-
erties about heap structures and the programs manipulating
the heap. The shape information of the heap data structures
can be used by variety of applications, for e.g., compile time
optimizations, compile-time garbage collection, debugging,
verification, instruction scheduling and parallelization.

In the last two decades, several shape analysis techniques
have been proposed in literature. However, there is a trade-off
between speed and precision for these techniques, thus mak-
ing them suitable either for verification or for optimization,
but not both. Precise shape analysis algorithms [10,14,24,27]
are not practical for optimizing compilers as they scale poorly
to the large heap manipulating programs. To achieve scalabil-
ity, the optimizing compilers use shape analysis algorithms
[6,11,20] that trade precision for speed by ignoring certain
properties of heap structures (for example, the calling context
or the field connectivity between the pointers).

In this paper, we present a field-sensitive, context-sensitive
shape analysis technique that uses field-based path informa-
tion to infer the shapes of heap structures. The novelty of our
approach lies in the way we use field information to remem-
ber the paths that result in a particular shape (Tree, DAG,
Cycle). This allows us to identify transitions from a conserv-
ative shape to a more precise shape (i.e., from Cycle to DAG,
from Cycle to Tree and from DAG to Tree) due to destruc-
tive updates. This in turn enables us to infer precise shape
information.

Our analysis captures the field sensitivity information
using two components: (a) Field-based Boolean variables to
remember the direct connections between two pointer vari-
ables, and (b) Path matrices that store the approximate paths
between pointer variables. The shape of a pointer variable at a
given program point is inferred from these two components.

This paper makes the following contributions:

1. We present a novel field-based shape analysis technique
that uses limited path information to infer precisely the
shapes of heap structures. We propose the analysis as an
instance of a forward data flow analysis framework, and
describe in details the components of the framework.

2. We describe a flow-sensitive, context-sensitive imple-
mentation of our analysis as a plug-in for GCC version
4.5.0 [1]. We present experimental evaluation and com-
parison of our analysis with an existing field-insensitive
approach [11] on several benchmark programs.

3. We propose some enhancements to our analysis: (a) A
Field-subset-based analysis to improve precision when
auxiliary fields1 are present in data structures, and

1 Fields that are used only for diagnostic or debugging purpose, or
unused by a significant part of the program.

(b) shape-based context-sensitive analysis to improve
memory footprint and speed when the number of con-
texts is huge.

The paper is organized as follows: We demonstrate the
working of our analysis using a motivating example in Sect. 2,
and explain intuitively the key concepts. Section 3 presents
the notations and definitions used by our analysis and Sect. 4
describes the details of the analysis. Section 5 describes
the baseline approach (field-insensitive shape analysis [11]),
the benchmark programs and our experimental evaluation.
Section 6 describes some enhancements over our current
scheme. We discuss some of the prior works on shape analysis
in Sect. 7. Section 8 concludes the paper and gives directions
for future work.

We start out with motivating examples that also illustrate
the workings of our analysis.

2 A motivating example

Following the literature [11,20,24], we define the shape
attribute for a pointer p as:

p.shape =
⎧
⎨

⎩

Cycle If a cycle can be reached from p
Dag Else if a DAG can be reached from p
Tree Otherwise

where the heap is visualized as a directed graph, and cycle and
DAG have their natural graph-theoretic meanings. For each
pointer variable, our analysis computes the shape attribute of
the data structure pointed to by the variable. We use the code
fragment in Fig. 1 to motivate the need for a field-sensitive
shape analysis.

Example 1 The program in Fig. 1a creates a binary tree
rooted at root (not shown) and uses the function mirror
to create its mirror image in situ. The program then calls
treeAdd on the mirrored tree to perform the additions of
its left and right subtrees recursively.

If it can be inferred that the shape of the argument to
the function treeAdd is indeed Tree, then a parallelizing
compiler can schedule the two recursive calls to treeAdd
on lines S24 and S26 in parallel. This is possible because
these two calls do not access any common region of heap,
and hence they can proceed independently.

The inference of the shape of the argument of the
treeAdd depends on the execution of mirror. Even when
called with an argument that has a shape of Tree, the func-
tion mirror temporarily changes the shape to a Dag (due
to assignments on line S12 and S15, both t→left and
t→right point to the same nodetr). The shape is reverted
back to Tree at line S16.

Field-insensitive shape analysis algorithms use conserva-
tive kill information and hence they are, in general, unable to
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Precise shape analysis using field sensitivity 81

(a)

(b)

Fig. 1 A motivating example. The program a manipulates the heap
structures created by using the basic data structure as shown in b

infer the shape transition from Cycle to Dag or from Dag
to Tree. For example, the algorithm by Ghiya et al. [11] can
correctly report the shape transition from Tree to Dag (at
S15) but fails to infer the shape transition from Dag to Tree
(at S16). Our analysis, on the other hand, keeps track of the
fields involved in creation of the DAG at S15 (t→left and
t→right), and therefore it is able to restore the shape to
Tree when t→right is updated.

We now show how we have incorporated limited field
sensitivity at each program point in our shape analysis. The
details of our analysis will be presented later (Sect. 4).

Example 2 The statement at S15 creates a new DAG struc-
ture reachable fromt, because there are two paths (t→left
and t→right) reaching tr. A field-sensitive shape analy-
sis algorithm must remember all paths from t to tr.

Fig. 2 Paths computed by our analysis for the program in Fig. 1a as
path matrix PF . The entry PF [x, y] lists the paths between pointer
variables x and y

Our analysis approximates a path between two pointer vari-
ables by the first field that is dereferenced on the path. Further,
as there may be an unbounded number of paths between two
variables, we use k-limiting [16] to approximate the number
of paths starting at a given field.

Our analysis remembers the path information using the
following: (a) PF : Path matrix that stores the first fields of
the paths between two pointers and (b) Boolean variables
that remember the fields directly connecting two pointer
variables. Figure 2 shows the values computed for PF and
Boolean variables by our analysis for the example program
in Fig. 1a. In this case, the fact that the shape of the variable t
becomes Dag after S15 is captured by the following Boolean
functions:2

tDag = (leftttr ∧ (|PF [t,tr]| > 1)),

leftttr = True.

where leftttr is a Boolean variable that is True because
the left field of t points to tr, PF is field-sensitive Path
matrix, |PF [t,tr]| is the count of number of paths between
t and tr.

The functions simply say that variable t reaches a DAG
because there are more than one paths (|PF [t,tr]| > 1)
from t to tr. It also keeps track of the path leftttr that is

2 The functions and values shown in this example and in Fig. 2 are
simplified to avoid references to concepts not defined yet.
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involved in the creation of the DAG. Later, at statement S16,
the path due t→ right between t and tr is broken, caus-
ing |PF [t,tr]| = 1. This causestDag to become False. Note
that we do not evaluate the Boolean functions immediately,
but associate the unevaluated functions with the statements.
When we want to find out the shape at a given statement,
only then we evaluate the function using the values from PF

and the Boolean variables at that statement.

We now formalize the intuitions presented in the example
above, starting with the concepts necessary to describe our
field-sensitive shape analysis technique.

3 Definitions and notations

We view the heap structure at a program point as a directed
graph, the nodes of which represent the allocated objects and
the edges represent the connectivity through pointer fields.
Pictorially, inside a node we show all the relevant pointer
variables that can point to the heap object corresponding to
that node. The edges are labeled by the name of the corre-
sponding pointer field. In this paper, we only label nodes and
edges that are relevant to the discussion, to avoid clutter.

Let H denote the set of all heap-directed pointers at a
particular program point and F denotes the set of all pointer
fields at that program point. Given two heap-directed pointers
p, q ∈ H, a path from p to q is the sequence of pointer fields
that need to be traversed in the heap to reach from p to q. The
length of a path is defined as the number of pointer fields in
the path. As the path length between two heap objects may be
unbounded, we keep track of only the first field of a path.3 To
distinguish between a path of length one (direct path) from a
path of length greater than one (indirect path) that start at the
same field, we use the superscript D for a direct path and I
for an indirect path. In pictures, we use solid edges for direct
paths, and dotted edges for indirect paths.

It is also possible to have multiple paths between two
pointers starting at a given field f . There can be at most one
such direct path f D . However, the number of indirect paths
starting at a field f , f I , may be unbounded. We include the
count for the indirect paths between two pointer variables in
the path set. To bound the size of the set, we put a limit k on
the number of repetitions of a particular field. If the number
goes beyond k, we treat the number of paths with that field
as ∞. The following example illustrates these concepts.

3 The decision to use only first field is guided by the fact that in many
intermediate languages (for example, GIMPLE for GCC), a statement is
allowed to use at most one field, i.e.p→f = … or …=p→f. Therefore,
a long path is broken into several small paths. While it is possible to
use prefixes of any fixed length by reconstructing the path, the process
is complex and does not add any fundamental value to our analysis.

(a) (b)

Fig. 3 Paths in a heap graph. Graph in b is a possible heap graph for
code in a. Solid edges are the direct paths, dotted edges are the indirect
paths

Example 3 Figure 3a shows a code fragment and Fig. 3b
shows a possible heap graph at a program point after line S5.
In any execution, there is one path between p and q, start-
ing with field f , whose length is statically unknown. This
information is stored by our analysis as the set { f I 1}. Fur-
ther, there are unbounded number of paths between p and s,
all starting with field f . There is also a direct path from p
to s using field g, and 3 paths starting with field h between
p and s. Assuming the limit k ≥ 3, this information can be
represented by the set {gD, f I∞, hI 3}. On the other hand, if
k < 3, then the set would be {gD, f I∞, hI∞}.

For brevity, we use f ∗ for the cases when we do not want
to distinguish between direct or indirect path starting at the
field f . We now define the field-sensitive path matrix used
by our analysis.

Definition 1 Field-sensitive path matrix PF is a matrix that
stores information about paths between two pointer variables
in the following form: Given p, q ∈ H, f ∈ F :

ε ∈ PF [p, p] where ε denotes the empty path.

f D ∈ PF [p, q] if there is a direct path f from p to q.

f I m ∈ PF [p, q] if there are m indirect paths starting

with field f from p to q and m ≤ k.

f I∞ ∈ PF [p, q] if there are m indirect paths starting

with field f from p to q and m > k.

Let N denote the set of natural numbers. We define the
following partial order for approximate paths used by our
analysis. For f ∈ F , m, n ∈ N , n ≤ m:

ε 	 ε, f D 	 f D, f I∞ 	 f I∞, f I m 	 f I∞,

f I n 	 f I m .

The partial order is extended to set of paths SP1, SP2 as:4

SP1 	 SP2 ⇔ ∀α ∈ SP1 , ∃β ∈ SP2 s.t.α 	 β

4 Note that for our analysis, for a given field f , these sets contain at
most one entry of type f D and at most one entry of type f I .
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Two pointers p, q ∈ H are said to interfere at a program
point if there exists s ∈ H such that both p and q have
paths reaching s at that point. Note that s could be p (or q)
itself, in which case the path from p (from q) is ε. Thus,
the interference relation between p and q, IF [p, q] can be
defined in terms of path matrix (PF ) as:

IF [p, q] ⇒ ∃s.PF [p, s] ∧ PF [q, s] (1)

As we will see later in the data-flow equations (Sect. 4),
we are only interested in the maximum count of pair of paths
that are interfering for two pointers at a given heap node. We
use |IF [p, q]| to denote this count for interfering paths for
nodes p and q. Our analysis computes over-approximations
for the PF matrix at each program point, and uses Eq. (1) to
compute an over-approximation for |IF |. This can result in a
conservative shape (Cycle or DAG instead of a Tree, Cycle
instead of a DAG) for a pointer, which is a safe inference.

Example 4 Figure 4 shows a heap graph and the correspond-
ing path matrix as computed by our analysis.

As mentioned earlier, for each variable p ∈ H, our analy-
sis uses attributes pDag and pCycle to store Boolean functions
telling whether p can reach a DAG or cycle respectively
in the heap. The Boolean functions consist of the values
from matrices PF , and the field connectivity information. For
f ∈ F , p, q ∈ H, field connectivity is captured by Boolean
variables of the form f pq , which is true when f field of p
points directly to q. The shape of p, p.shape, can be obtained
by evaluating the functions for the attributes pCycle and pDag,
and using Table 1. It is important to note that we are only
interested in those Boolean functions that evaluate to true
for attributes pCycle and pDag. This is because we want to
capture the transitions of shape from Cycle to Dag, from
Cycle to Tree, and from Dag to Tree. If the function
for pCycle (pDag) is already false, then such transitions can-
not take place. Therefore, we only store Boolean functions if
they can potentially evaluate to true value. Further, for these
functions, we store the functions themselves as Binary Deci-
sion Diagrams (BDDs) [4], and not the evaluated values. The
evaluation of functions takes place only when the shape of
the corresponding pointer is required by some client of the
analysis or by the analysis itself. We call this lazy evaluation
of Boolean functions.

(a) (b)

Fig. 4 A heap graph a and its field-sensitive path matrix b

Table 1 Determining shape from Boolean attributes

pCycle pDag p.shape

True Don’t care Cycle

False True DAG

False False Tree

We use the following operations in our analysis. Let S
denote the set of approximate paths between two nodes,
P denote a set of pair of paths, and k ∈ N denote the limit
on maximum indirect paths stored for a given field. Then,

– Projection: For f ∈ F , S � f extracts the paths starting
at field f .

S � f ≡ S ∩ { f D, f I 1, . . . , f I k, f I∞}

– Counting: The count on the number of paths is defined
as:

|ε| = 1,

∣
∣
∣ f D

∣
∣
∣ = 1,

∣
∣
∣ f I∞

∣
∣
∣ = ∞

∣
∣
∣ f I j

∣
∣
∣ = j for j ∈ N

|S| =
∑

α∈S

|α|

– Path removal, intersection and union over set of approx-
imate paths: For singleton sets of paths {α} and {β},
path removal ({α} � {β}), intersection ({α} ∩ {β}) and
union({α} ∪ {β}) operations are defined as given in
Table 2. These definitions can be extended to set of paths
in a natural way. For example, for general sets of paths,
S1 and S2, the definition of removal can be extended as:

S1 � S2 =
⋂

β∈S2

⋃

α∈S1

({α} � {β})

– Multiplication by a scalar(�): Let i, j ∈ N , i ≤ k, j ≤ k.
Then, for a path α, the multiplication by a scalar i , i � α

is defined in Table 2(d). The operation is extended to set
of paths as:

i � S =
{∅ i = 0

{i � α | α ∈ S} i ∈ N ∪ {∞}, i �= 0

4 Our analysis

For {p, q} ⊆ H, f ∈ F , n ∈ N and op ∈ {+,−}, we
have the following eight basic statements that can access or
modify the heap structures.
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Table 2 Path operations

i, j ∈ N , m = max(i − j, 0), n = min(i, j),

τ =
{

i + j if i + j ≤ k
∞ Otherwise

η =
{

i ∗ j if i ∗ j ≤ k
∞ Otherwise

{ε} { f D} { f I j } { f I∞} g∗

(a) Path removal

� {β}
{α}
{ε} ∅ {ε} {ε} {ε} {ε}
{ f D} { f D} ∅ { f D} { f D} { f D}
{ f I i } { f I i } ∅ { f I m} ∅ { f I i }
{ f I∞} { f I∞} ∅ { f I∞} { f I∞} { f I∞}

(b) Intersection

∩ {β}
{α}
{ε} ε ∅ ∅ ∅ ∅
{ f D} ∅ { f D} ∅ ∅ ∅
{ f I i } ∅ ∅ { f I n} { f I i } ∅
{ f I∞} ∅ ∅ { f I j } { f I∞} ∅

(c) Union

∪ {β}
{α}
{ε} {ε} {ε, f D} {ε, f I j } {ε, f I∞} {ε, g∗}
{ f D} { f D, ε} { f D} { f D, f I j } { f D, f I∞} { f D, g∗}
{ f I i } { f I i , ε} { f I i , f D} { f I τ } { f I∞} { f I i , g∗}
{ f I∞} { f I∞, ε} { f I∞, f D} { f I∞} { f I∞} { f I∞, g∗}

(d) Multiplication by a Scalar

� α ε f D f I j f I∞

i

i ε f I i f Iη f I∞

∞ ε f I∞ f I∞ f I∞

1. Allocations

(a) p = malloc();

2. Pointer Assignments

(a) p = NULL;
(b) p = q;
(c) p = q → f;
(d) p = &(q → f);
(e) p = q op n;

3. Structure Updates

(a) p → f = q;
(b) p → f = NULL;

Our intend is to determine, at each program point, the
path matrix PF and the Boolean variables capturing field
connectivity. We formulate the problem as an instance of

forward data flow analysis, where the data flow values are
the Boolean variables and the path matrix. For simplicity, we
construct basic blocks containing a single statement each.
Before presenting the equations for data flow analysis, we
define the confluence operator (merge) for various data flow
values as used by our analysis. Using the superscripts x and
y to denote the values coming along two paths,

merge
(

f x
pq , f y

pq

)
= f x

pq ∨ f y
pq , f ∈ F , p, q ∈ H

merge
(

px
Cycle, py

Cycle

) = px
Cycle ∨ py

Cycle, p ∈ H
merge

(
px
Dag, py

Dag

) = px
Dag ∨ py

Dag, p ∈ H
merge

(
Px

F , P y
F

) = Pxy
F where Pxy

F [p, q] =
Px

F [p, q] ∪ P y
F [p, q], ∀p, q ∈ H

The transformation of data flow values due to a statement is
captured by the following set of equations:

123



Precise shape analysis using field sensitivity 85

Pout
F [p, q] =

(
P in

F [p, q] � Pkill
F [p, q]

)
∪ P

gen
F [p, q]

pout
Cycle =

(
pin
Cycle ∧ ¬pkill

Cycle

)
∨ p

gen
Cycle

pout
Dag =

(
pin
Dag ∧ ¬pkill

Dag

)
∨ p

gen
Dag

Update of field connectivity information and the compu-
tation of the gen and kill components of various data flow
values depend on the type of statement. This is described in
details next.

4.1 Analysis of basic statements

We now present our analysis for each kind of statement that
can modify the heap structures.

4.1.1 p = NULL

This statement only kills the existing values of p. The heap
node pointed-to by p is no longer reachable by p. However, it
is possible that the node is part of a DAG or a Cycle reachable
from some other node q. To keep the analysis safe, we need
to first evaluate all terms that involve p( f ∗

pq , PF [q,p], etc.)
and use the resulting value in the equations using them. Then,
we kill the values of pas given by the equations:

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

p
gen
Cycle = False p

gen
Dag = False

∀s ∈ H,

f ps = False fsp = False
Pkill

F [p, s] = P in
F [p, s] P

gen
F [p, s] = ∅

Pkill
F [s, p] = P in

F [s, p] P
gen
F [s, p] = ∅

Example 5 In the code segment Fig. 5a, after statement S2
there is a Cycle on p and q. The cycle on qmust remain
after S3. Figure 5b, presents the relevant data-flow values
after S2. Before S3, we evaluate terms containing p, i.e. fqp

and |PF [p, q] ≥ 1| both to true, and use these values in the
equation q in

Cycle so as to get q in
Cycle as true. Then we kill all

the equations of p. After S3, we still have qout
Cycle as true, thus

inferring the shape of q asCycle. This would not be the case
if we do not eagerly evaluate the terms containing p at S3.

4.1.2 p = malloc()

After this statement all the existing data-flow values of p get
killed and pstarts pointing to a newly allocated object. The
kill effect is exactly same as that of p = NULL. After the
statement, p can only have an empty path to itself.

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

p
gen
Cycle = False p

gen
Dag = False

(a)

(b)

(c)

Fig. 5 The case for eager evaluation of Boolean functions involving p
for p = NULL. a the updates of a heap graph. b and c data-flow values
and Boolean equations before and after S3. Without eager evaluation,
the equation for qCycle will remain fqp ∧ (|PF [p, q] ≥ 1|) and hence
evaluate to false after S3

∀s ∈ H, s �= p,

f ps = False fsp = False
Pkill

F [p, s] = P in
F [p, s] P

gen
F [p, s] = ∅

Pkill
F [s, p] = P in

F [s, p] P
gen
F [s, p] = ∅

Pkill
F [p, p] = P in

F [p, p] P
gen
F [p, p] = {ε}

4.1.3 p = q, p = &(q→f), p = q op n

In our analysis, we consider these three pointer assignment
statements as equivalent. After this statement all the existing
values of p get killed and it will point to same heap object
(or NULL) as pointed to by q. So p will have the same paths
and field connections as those of q. The kill effect of this
statement is same as that of the previous cases. The generated
Boolean functions for heap object p corresponding to DAG
or Cycle attribute will also be same as those of q, with all
occurrences of q replaced by p.5

5 The notation X [q/p] means a copy of Boolean equation X with all
occurrences of qreplaced by p.

123



86 S. Dasgupta et al.

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

p
gen
Cycle = q in

Cycle[q/p] p
gen
Dag = q in

Dag[q/p]
∀s ∈ H, s �= p, ∀ f ∈ F
f ps = fqs fsp = fsq

Pkill
F [p, s] = P in

F [p, s] P
gen
F [p, s] = P in

F [q, s]
Pkill

F [s, p] = P in
F [s, p] P

gen
F [s, p] = P in

F [s, q]
Pdkill

F [p, p] = P in
F [p, p] P

gen
F [p, p] = P in

F [q, q]

4.1.4 p→f = NULL

This statement breaks the existing link f emanating from p,
thus killing equations of pthat are due to link f . The state-
ment does not generate new equations.

pkill
Cycle = False, pkill

Dag = False

p
gen
Cycle = False, p

gen
Dag = False

∀q, s ∈ H, s �= p,

f pq = False
Pkill

F [p, q] = P in
F [p, q] � f Pkill

F [s, q] = ∅

4.1.5 p→f = q

This statement first breaks the existing link f and then re-
links the heap object pointed to by p to the heap object
pointed to by q. The kill effects are exactly same as described
in the case of p→f = null. We only describe the gener-
ated values here.

The fact that the shape of the variable p becomes DAG
after the statement is captured by the Boolean functions
p

gen
Dag . The function simply say that variable p reaches a DAG

because there are more than one paths (|IF [p, q]| > 1) from
p to q. It also keeps track of the path f pq in this case. The
function q

gen
Cycle (or p

gen
Cycle) captures the fact that cycle on q

(or p) consists of field f from p to q ( f pq ) and some path
from q to p (|PF [q, p]| ≥ 1). The function p

gen
Cycle(p

gen
Dag ) also

captures the fact that cycle (DAG) on p can be due to the link
f pq reaching an already existing cycle (DAG) on q. These
are summarized as follows:

p
gen
Cycle = ( f pq ∧ q in

Cycle) ∨ ( f pq ∧ (|PF [q, p]| ≥ 1))

p
gen
Dag = ( f pq ∧ q in

Dag) ∨ ( f pq ∧ (|IF [p, q]| > 1)

q
gen
Cycle = f pq ∧ (|PF [q, p]| ≥ 1)

q
gen
Dag = False

f pq = True

For nodes s ∈ H other than p or q, the function s
gen
Cycle

captures the fact that cycle on s consists of some path from s
to p (or q), i.e. |PF [s, p]| ≥ 1 (or |PF [s, q]| ≥ 1) and the fact
that a Cycle on p (or q) has just created due to the statement.

Again the function s
gen
Dag simply say that variable s reaches a

DAG because there are more than one way of interference
between s and q, i.e. |IF [s, q]| > 1. It also keeps track of the
paths f pq and PF [s, p] in this case.

s
gen
Cycle = ((|PF [s, p]| ≥ 1) ∧ f pq ∧ q in

Cycle)

∨ ((|PF [s, p]| ≥ 1) ∧ f pq ∧ (|PF [q, p]| ≥ 1))

∨ ((|PF [s, q]| ≥ 1) ∧ f pq ∧ (|PF [q, p]| ≥ 1)),

∀s ∈ H, s �= p, s �= q

s
gen
Dag = (|PF [s, p]| ≥ 1) ∧ f pq ∧ (|IF [s, q]| > 1),

∀s ∈ H, s �= p, s �= q

After the statement, all the nodes that have paths towards p
(including p) will have path towards all the nodes reachable
from q (including q). Thus,

For r, s ∈ H:

P
gen
F [r, s] =

∣
∣
∣P in

F [q, s]
∣
∣
∣ � P in

F [r, p], s �= p, r �∈ {p, q}
P

gen
F [r, p] =

∣
∣
∣P in

F [q, p]
∣
∣
∣ � P in

F [r, p], r �= p

P
gen
F [p, r ] =

∣
∣
∣P in

F [q, r ]
∣
∣
∣ �

(
P in

F [p, p] � {ε} ∪ { f I 1}
)

,

r �= q

P
gen
F [p, q] = { f D} ∪

(∣
∣
∣P in

F [q, q] − {ε}
∣
∣
∣ � { f I 1}

)
∪

(∣
∣
∣P in

F [q, q]
∣
∣
∣ �

(
P in

F [p, p] � {P in
F [p, p] � f ∪ {ε}}

))

P
gen
F [q, q] = 1 � P in

F [q, p]
P

gen
F [q, r ] =

∣
∣
∣P in

F [q, r ]
∣
∣
∣ � P in

F [q, p], r �∈ {p, q}

4.1.6 p = q→f

The values killed by the statement are the same as those in the
case of p = NULL. The values created by this statement are
heavily approximated by our analysis. After this statement,
p points to the heap object which is accessible from pointer
q through f link. The only inference we can draw is that
pis reachable from any pointer rsuch that r reaches q → f
before the assignment.

As pcould potentially point to a cycle (DAG) reachable
from q, we set:

p
gen
Cycle = q in

Cycle p
gen
Dag = q in

Dag

Note that shape of no other pointer variable gets affected by
this statement.

We record the fact that qreaches pthrough the path f .
Also, any object reachable from qusing field f is marked as
reachable from pthrough any possible field.

fqp = True

h pr =
∣
∣
∣P in

F [q, r ] � f
∣
∣
∣ ≥ 1 ∀h ∈ F , ∀r ∈ H
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The equations to compute the generated values for PF

can be divided into three components. We explain each of
the component, and give the equations.

As a side-effect of the statement, any node sthat is reach-
able from qthrough field f before the statement, becomes
reachable from p. However, this information is not sufficient
to determine the path from pto s. Therefore, we conserva-
tively assume that any path starting from pcan potentially
reach s. This is achieved in the analysis by using a universal
path set Ufor PF [p, s]. The set U is defined as:

U = {ε} ∪
⋃

f ∈F
{ f D, f I∞}

Because it is also not possible to determine if there exists
a path from p to itself, we safely conclude a self loop on
p in case a cycle is reachable from q(i.e., q.shapeevaluates
to Cycle). These observations result in the following equa-
tions:

∀s ∈ H, s �= p ∧ P in
F [q, s] � f �= ∅

P1[p, s] =
⎧
⎨

⎩

{ε} (P in
F [q, s] � f = f D)

∧ q.shape evaluates to Tree or Dag
U Otherwise

P1[p, p] = s

{U q.shape evaluates to Cycle
{ε} Otherwise

Any node s(excluding pand q), that has paths to q before
the statement, will have paths to p after the statement. How-
ever, we cannot know the exact number of paths s to p, and
therefore use upper limit (∞) as an approximation:

P2[s, p] = ∞ � P in
F [s, q] ∀s ∈ H, s /∈ {p, q}

If p �= q, then we record the path from qto pas:

P2[q, p] =
{ { f D} q. shape evaluates to Tree

U Otherwise

The third category of nodes to consider are those that inter-
fere with the node corresponding to q → f , without going
through q. Any such node swill have paths to p after the
statement. Thus, we have:

∀r, s ∈ H, r �∈ {p, q}

P3[s, p] =
⋃

r

{
α | f D ∈ P in

F [q, r ] ∧ α ∈ P in
F [s, r ] � P in

F [s, q]
}

Finally, we compute the entries generated for PF as:

P
gen
F [r, s] = P1[r, s] ∪ P2[r, s] ∪ P3[r, s] ∀r, s ∈ H

4.2 Properties

In this section we discuss some properties of our analysis.
First we discuss the need of introducing Boolean variables

on the top of field-sensitive matrices. We then discuss termi-
nation guarantees for our analysis. We finally give bounds
corresponding to the storage requirement of our analysis.

4.2.1 Need for Boolean variables

Because we compute approximations for field-sensitive
matrices under certain conditions (e.g. for statement p =
q → f ), these matrices can result in imprecise shape.
Boolean variables help us retain some precision in such cases,
as demonstrated next.

Example 6 Figure 6 shows a program fragment, and heap
graph at the program point before statement S1. At S2, a DAG
is created that is reachable from rwhich gets destroyed after
S3. Figure 6c shows the path information between rand pand
the Boolean variable f pq at various program points. First
we note that after statement S2, the analysis conservatively
approximates the path PF [r, p] using the universal path U .
As a consequence, more than one pair of paths from qand
rare considered interfering at t. Further, these entries will
not be affected by the kill effects of statement S3. Thus, a
Dag inferred using only the PF matrix will continue to exist
even after S3.

The use of field-based Boolean variables avoid this sit-
uation as follows. The fact that the shape of the variable
rbecomes Dag after S2 is captured by the following Boolean
function and variable:

rDag = (|PF [r, p]| ≥ 1) ∧ f pq ∧ (|IF [r, q]| > 1)

f pq = True

After S2, rDag becomes True, thus implying that r.shape is
Dag. Later, at statement S3, the path due to f pq is broken.
Even though |PF [r, p]| ≥ 1| and |IF [r, q]| > 1 still hold

(a)

(c)

(b)

Fig. 6 Using Boolean variables to improve precision. a program frag-
ment, b the heap structure at the start of the fragment (before S1) , and
c the values for the Boolean variables and paths between variables of
interest
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(because of presence of U), we can still infer the shape tran-
sition from Dag to Tree because the Boolean variable f pq

becomes False, setting rDag to False.

4.2.2 Termination

The computation of PF matrices follows from the fact that the
data flow functions are monotonic and the sets of approximate
paths are bounded. The number of Boolean variables for a
program is bounded by the number of pointer variables, and
the fields in the program. Thus, the set of Boolean functions
is also bounded as it uses a fixed set of Boolean variables and
fixed operators (∨ and ∧). The termination of computation
of Boolean functions for Cycle and Dag follows from the
monotonicity of the flow functions [15,18].

4.2.3 Storage requirement

The memory requirement of our analysis consists of the stor-
age space for the path matrices (PF ) and the Boolean func-
tions. Let n ∈ N denote the cardinality of the set H at a
program point. Obviously n is bounded by the total number
of pointer variables in the program. Let m ∈ N denotes the
maximum number of possible distinct pointer fields emanat-
ing from a heap-directed pointer, which is again a bounded
quantity. Between two pointers, for each field, we only use:
(a) the (k-limited) count of the number of indirect paths start-
ing at that given field, and (b) a direct path using that field (if
there is one). The storage requirement for the path matrices
PF is thus bounded by O(n2 ∗ m).

In our empirical evaluation, we have observed that the path
matrices are sparse for large programs, as a pointer typically
has paths only to a small set of heap nodes. Therefore, a
sparse matrix-based representation can be used to store path
matrices efficiently.

The Boolean functions at each program point are stored as
bdds, using the BuDDy [19] library. As can be seen from the
equations for the Boolean functions, the height and width of
the expression tree for a function is polynomial in the num-
ber of pointer instructions in the program. However, because
BDDs keep the Boolean functions in canonical form, it allow
reusing the BDDs for the expressions at different program
points. This results in an efficient storage of the Boolean
functions.

5 Implementation and experimental results

We have implemented our technique as a context-sensitive,
flow-sensitive interprocedural analysis [2] in C for GCC ver-
sion 4.5.0 [1] as a dynamic plug-in. To achieve context sen-
sitivity, we use Call-strings-based approach [22].

The analysis works on GIMPLE, the intermediate repre-
sentation used by GCC. GIMPLE is a 3-address representa-

tion with at max one load/store per statement. To simplify the
analysis, we treat each statement as a basic block in itself,
except the call statement which is split into two blocks: call
block and return block [22]. Our analysis computes the path
matrix, Boolean field variables and Boolean shape functions
at the IN and OUT of each basic block.

The analysis is preceded by a pre-processing phase that
collects the information about heap pointers present in the
program, for example the data type, number of fields, scope
of the pointer variable. The analysis uses a worklist-based
implementation of data flow analysis.

The data structures used by the analysis are as follows. We
use dynamically allocated two dimensional sparse matrices
to store the path information (PF ) at each program point.
The field variables are stored inbool data type. We represent
Boolean functions as Binary Decision Diagrams (BDDs) [4],
using the BuDDY [19] package.

We have also implemented an existing field-insensitive
shape analysis [11]. It is implemented as a context-sensitive,
flow-sensitive analysis, and is used as baseline approach to
compare against.

5.1 Benchmarks

We have experimented with benchmarks obtained from two
sources. The List benchmarks [23] implement basic oper-
ations on linked lists in C++. This include the recursive
and iterative implementations of the following operations on
linked lists: insert, remove, delete all, search, append, merge
and reverse. The Olden benchmarks [5] are used to show
how our analysis performs on real life code with large num-
ber of complex function calls, including recursive calls. The
method and results of our experiments are described in the
rest of the section.

5.2 Methodology

We ran our experiments on a Intel® Xeon® 2.40 GHz CPU
with 8 GB of RAM and 8 GB of swap space. The effectiveness
of analysis is measured in terms of the following parameters:

Shapes inferred. We counted the number of each type
of shapes (Tree, Dag, Cycle) reported by our analysis
and the baseline approach. The analysis which reports more
Trees and fewer Dags and Cycles is considered better.

Time for the analysis. We computed the total time taken
by each of the analysis. While it is expected that the base-
line approach will always have better time (due to fewer
computations involved), we would like to have an estimate
of the slowdown to better understand the scalability of our
analysis.

Peak memory usage. Again, the baseline approach will
always perform better in terms of peak memory usage for
non-trivial programs because it does not store equations and
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Table 3 Comparison of our analysis with baseline analysis [11] for List [23] and Olden [5] benchmarks

Benchmark Baseline analysis Our analysis Ratio

#Shape Time (T1) Memory (M1) #Shape Time (T2) Memory (M2) Time Memory
(Tree, Dag,
Cycle)

(MilliSec) (MB) (Tree, Dag,
Cycle)

(MilliSec) (MB) T2/T1 M2/M1

List Benchmarks
100_create_iter (99, 0, 0) 0.747 6.91 (99, 0, 0) 20.948 3.19 28.043 0.46

100_create_recur (110, 0, 0) 1.124 6.12 (110, 0, 0) 24.098 8.26 21.440 1.35

200_delall_iter_create_fixed (319, 0, 0) 1.671 5.33 (319, 0, 0) 25.23 6.82 15.099 1.28

200_delall_iter_create_iter (154, 0, 0) 1.349 5.59 (154, 0, 0) 24.451 9.58 18.125 1.71

200_delall_recur_create_fixed (308, 0, 0) 1.767 5.33 (308, 0, 0) 29.952 9.18 16.951 1.72

200_delall_recur_create_iter (143, 0, 0) 1.626 4.8 (143, 0, 0) 24.366 8.26 14.985 1.72

300_insert_iter_create_fixed (509, 51, 0) 3.398 6.64 (551, 9, 0) 46.745 6.82 13.757 1.03

300_insert_iter_create_iter (269, 51, 0) 3.109 5.33 (311, 9, 0) 43.451 7.11 13.976 1.33

300_insert_recur_create_fixed (429, 0, 0) 2.794 5.33 (425, 4, 0) 34.941 7.09 12.506 1.33

300_insert_recur_create_iter (266, 0, 0) 2.653 9.75 (266, 0, 0) 38.683 7.12 14.581 0.73

400_remove_iter_create_fixed (616, 0, 40) 2.348 7.17 (643, 13, 0) 28.161 8.40 11.994 1.17

400_remove_iter_create_iter (360, 0, 40) 1.994 8.24 (387, 13, 0) 34.019 6.03 17.061 0.73

400_remove_recur_create_fixed (540, 0, 0) 2.364 8.23 (540, 0, 0) 26.682 9.45 11.287 1.15

400_remove_recur_create_iter (315, 0, 0) 2.07 6.91 (315, 0, 0) 27.923 4.98 13.489 0.72

500_search_iter_create_fixed (403, 0, 0) 1.573 8.13 (403, 0, 0) 25.777 4.98 16.387 0.61

500_search_iter_create_iter (208, 0, 0) 1.388 5.36 (208, 0, 0) 23.573 6.29 16.983 1.17

500_search_recur_create_fixed (462, 0, 0) 1.862 5.85 (462, 0, 0) 30.201 10.28 16.220 1.76

500_search_recur_create_iter (252, 0, 0) 1.531 8.91 (252, 0, 0) 31.247 6.82 20.410 0.76

600_append_iter_create_fixed (544, 0, 0) 2.231 5.32 (537, 7, 0) 31.072 7.95 13.927 1.49

600_append_iter_create_iter (304, 0, 0) 1.87 6.64 (297, 7, 0) 35.381 7.09 18.920 1.07

600_append_recur_create_fixed (578, 0, 0) 2.718 5.32 (578, 0, 0) 31.57 12.17 11.615 2.29

600_append_recur_create_iter (323, 0, 0) 2.196 5.86 (323, 0, 0) 34.458 6.82 15.691 1.16

700_merge_iter_create_fixed (641, 0, 124) 3.93 6.91 (719, 46, 0) 44.398 7.08 11.297 1.02

700_merge_iter_create_iter (432, 0, 138) 6.362 6.39 (452, 54, 64) 75.186 10.11 11.818 1.58

700_merge_recur_create_fixed (840, 0, 0) 6.635 6.12 (840, 0, 0) 79.291 8.74 11.950 1.43

700_merge_recur_create_iter (525, 0, 0) 6.238 5.59 (525, 0, 0) 78.413 7.09 12.570 1.27

800_reverse_iter_create_fixed (470, 0, 55) 2.33 7.17 (495, 30, 0) 30.353 6.82 13.027 0.95

800_reverse_iter_create_iter (245, 0, 55) 2.074 5.32 (270, 30, 0) 32.384 9.05 15.614 1.70

800_reverse_recur_create_fixed (880, 0, 0) 4.253 6.38 (880, 0, 0) 44.728 6.82 10.517 1.07

800_reverse_recur_create_iter (550, 0, 0) 3.804 5.36 (550, 0, 0) 46.117 8.00 12.123 1.49

Olden Benchmarks

Health (2800, 0, 216) 99.654 55.98 (3005, 4, 7) 3,184.563 211.77 31.956 3.78

MST (1439, 6, 165) 40.341 6.18 (1665, 83, 0) 559.043 83.64 13.858 13.53

Power (397, 63, 0) 13.774 4.93 (460, 0, 0) 458.805 106.11 33.309 21.52

em3d (1008, 0, 0) 16.192 6.17 (1008, 0, 0) 164.311 61.30 10.148 9.94

Perimeter (850, 0, 0) 30.451 5.45 (850, 0, 0) 30,095.358 2,477.67 988.321 454.62

TreeAdd (63, 0, 0) 0.764 5.45 (63, 0, 0) 27.16 6.60 35.550 1.21

Tsp (5718, 0, 277) 78.166 55.6 (5861, 0, 244) 80,144.484 6,499.13 1,025.311 116.89

Voronoi (41318, 0, 532) 2,972.958 1,670.57 (41846, 0, 4) 43,843.493 3,548.43 14.747 2.12

only stores Boolean values in matrices as opposed to approx-
imate path sets stored by our analysis. This metric also gives
us an idea of the scalability of our analysis.

We set the limiting factor k to 3 for our analysis.

5.3 Results and explanations

Table 3 shows the comparison of our approach with the
baseline approach for the above mentioned benchmarks.
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The general observation is that our analysis is costly in terms
of both memory usage as well as time taken. However, for
complex programs, it is able to find precise shape for the heap
structures.

For some simple benchmarks (for e.g., 100_create_
iter), our memory usage is better than baseline approach.
The baseline approach stores interference matrix explicitly,
that we do not store. For large programs, this saving is off-
set by the large number of paths stored in our path matrices.
The benchmark 100_create_iter and some other pro-
grams have very few paths among the pointers. Thus, the size
of path matrices is small and hence our analysis takes less
memory.

Our analysis gives safe results (more Dags as compared
to baseline approach) for 3 of the benchmarks. These are:

– 300_insert_recur_create_fixed,
– 600_append_iter_create_fixed, and
– 600_append_iter_create_iter

This is due to the fact that our computation of interference
from path matrix can result in some spurious interference
being detected. That is why our analysis sometimes infers
spurious Dags. Since the shape Cycle does not depend on
interference but only on paths, we never detect more cycles
than the baseline approach.

Storing the path matrices in a sparse representation has
resulted in significant memory and analysis-time savings as
compared to an earlier simple matrix-based implementation.
This is because typical programs use a large number of point-
ers that do not depend on each other. As a result the sizes of
path matrices are huge, but they have very few non-empty
entries. Sparse matrix representation avoids the storage asso-
ciated with the empty entries. The savings in analysis-time
is because only few entries have to be manipulated and due
to caching effects.

Even with sparse matrix-based implementation, our analy-
sis takes very long time and large amount of memory to ana-
lyze the benchmarks Perimeter and Tsp. The profiling
of our analysis on these programs revealed that the these pro-
grams use a large number of pointers that interact with each
other. As a result the path matrices are dense, nullifying the
advantages of using sparse representation.

6 Enhancements

In this section, we propose some enhancements to our analy-
sis. The implementation of these enhancements is still a work
in progress.

6.1 Field-subset-based analysis

Many a times data structures include auxiliary fields used
mainly for traversing the data structure for debugging or
diagnostic purposes. The presence of such fields, however
can result in imprecise shapes. We illustrate this using the
following example.

Example 7 Consider the code segment in Fig. 7 which
defines a function search, for searching data in a binary
tree and a functioninsert, for inserting a node into a binary
tree. In insert, a cycle is getting created between s and p
after S18. Also the field-sensitive analysis infers the shape of
p and s as cycles at that point.

Note that in the search function, the parent pointer
is not at all used. Therefore, the shape of the heap graph
accessible to (and traversed by) the search function is a
Tree. But, as the function is called with the variable root,
whose shape gets evaluated to Cycle in the insert func-
tion, we infer that the shape of the root remains Cycle at

Fig. 7 The binary search program
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all program points in the search function. This inhibits the
parallel scheduling of recursive calls tosearch on lines S23
and S24.

For the above case, unlike the field-sensitive analysis,
field-subset-based analysis can correctly identify the shape
by considering the fields accessed within a function and using
only those fields to infer the shape. We now present intuition
behind the analysis for the above example.

Example 8 Let us consider the simplified equation of
rootCycle along with the relevant data-flow values at the
end of statement S18 (or at the beginning of search).

rootCycle = (parentp,root ∧ (|PF [root,p]| ≥ 1))

parentp,root = True

PF [root,p] = {leftD}
In field-subset-based analysis, we use only those fields

which are accessed within a function to evaluate the Boolean
equations. In search, the field parent is not accessed,
hence all the data-flow values (like the path matrix entries and
Boolean variables) which use this field treat it as being absent
(False). In this case, the Boolean variable parentp,root

is treated as False, which makes the above equation of
rootCycle False, inferring the shape of root as Tree
(rootDag is also False in this case). A parallelizing com-
piler can schedule the recursive calls on lines S23 and S24 in
parallel.

The key motivation behind using field-subset-based analy-
sis is that if a function does not refer to a field f at all, it can
not access sharing due to those Cycles or Dags that nec-
essarily involve the field f . We plan to implement it in near
future.

6.2 Shape-based context-sensitive analysis

In context-insensitive analysis we compromise on accuracy,
whereas in context-sensitive analysis we compromise on
memory consumption. To compromise between the mem-
ory consumption and precision, we propose a shape-based
context-sensitive analysis which is midway between the
above two approaches.

It is evident that merging all possible calling contexts dur-
ing function call leads to conservative incoming data-flow
values which results in inferring imprecise shapes. In shape-
based context-sensitive approach, we keep separate set of
data-flow values for each possible shape at the start of func-
tions and the merging of calling contexts is based on the
shape of the heap pointer arguments during function call.

We expect that this methods helps in reducing the mem-
ory consumption as compared to context-sensitive analysis
without loosing much on precision. However, we are yet to
complete the implementation of this approach and evaluate
it experimentally.

7 Related work

The shape-analysis problem was initially studied in the
context of functional languages. Jones and Muchnick [16]
proposed one of the earliest shape analysis technique for
Lisp-like languages with destructive updates of structure.
They used sets of finite shape graphs at each program
point to describe the heap structure. To keep the shape
graphs finite, they introduced the concept of k-limited graphs
where all nodes beyond k distance from root of the graph
are summarized into a single node. Hence the analysis
resulted in conservative approximations. The analysis is
not practical as it is extremely costly both in time and
space.

Chase et al. [6] introduced the concept of limited reference
count to classify heap objects into different shapes. They also
classified the nodes in concrete and summary nodes, where
summary nodes were used to guarantee termination. Using
the reference count and concreteness information of the node,
they were able to kill relations (strong updates) for assign-
ments of the form p → f = q in some cases. However, this
information is not insufficient to compute precise shape, and
detects false cycles even in case of simple algorithms like
destructive list reversal.

Sagiv et al. [24,25] proposed generic, unbiased shape
analysis algorithms based on Three-Valued logic. They intro-
duce the concepts of abstraction and re-materialization.
Abstraction is the process of summarizing multiple nodes
into one and is used to keep the information bounded.
Re-materialization is the process of obtaining concrete nodes
from summary node and is required to handle destructive
updates. By identifying suitable predicates to track, the analy-
sis can be made very precise. However, the technique has
potentially exponential run-time in the number of predicates,
and therefore not suitable for large programs.

Distefano et al. [10] presented a shape analysis technique
for linear data structures (linked-list etc.), which works on
symbolic execution of the whole program using separation
logic. Their technique works on suitable abstract domain,
and guarantees termination by converting symbolic heaps to
finite canonical forms, resulting in a fixed-point. By using
enhanced abstraction scheme and predicate logic, Cherini
et al. [8] extended this analysis to support nonlinear data
structure (tree, graph etc.).

Berdine et al. [3] proposed a method for identifying com-
posite data structures using generic higher-order inductive
predicates and parameterized spatial predicates. However,
using of separation logic does not perform well in inference
of heap properties. Hackett and Rugina in [14] presented a
new approach for shape analysis which reasons about the
state of a single heap location independently. This results in
precise abstractions of localized portions of heap. This local
reasoning is then used to reason about global heap using
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context-sensitive interprocedural analysis. Cherem et al. [7]
use the local abstraction scheme of [14] to generate local
invariants to accurately compute shape information for com-
plex data structures.

Jump and McKinley [17] give a technique for dynamic
shape analysis that characterizes the shape of recursive data
structure in terms of dynamic degree metrics which uses in-
degrees and out-degrees of heap nodes to categorize them into
classes. While this technique is useful for detecting certain
types of errors; it fails to visualize and understand the shape
of heap structure and cannot express the sharing information
in general.

The present work is an extension of the analysis devel-
oped by Sandeep et al. [9]. The major improvements in
the current work include (a) removal of the computation
of interference matrices (IF ), which improved the run time
and the memory significantly, (b) improving the precision
of some data-flow equations, (c) extensions to a call-strings
based context-sensitive interprocedural analysis and (d)
implementation and evaluation the analysis for some stan-
dard benchmarks. The work by Sandeep et al. [9] itself was
an enhancement over the work proposed by Ghiya et al. [11]
and by Marron et al. [20]. The analysis Ghiya et al. [11]
keeps interference and direction matrices between any two
pointer variables pointing to heap object and infer the shape
of the structure as Tree, Dag or Cycle. They have demon-
strated the practical applications of their analysis [12,13]
and shown that it works well on practical programs. The
main shortcoming of this approach is that it cannot handle
kill information. In particular, the approach is unable to iden-
tify transitions from Cycle to Dag, from Cycle to Tree
and from Dag to Tree, and hence conservatively identifies
the shapes. Marron et al. [20] presents a data flow framework
that uses heap graphs to model data flow values. The analysis
uses a technique that is similar to re-materialization. How-
ever, unlike parametric shape analysis techniques [25], the
re-materialization is approximate and may result in loss of
precision.

Our method is based on data flow analysis that uses matri-
ces and Boolean functions as data flow values. We use field-
sensitive matrices to store path information, and Boolean
variables to record field updates. By incorporating field sen-
sitivity information, we are able to improve the precision
considerably.

8 Conclusion and future work

In this paper we proposed a field-sensitive shape analysis
technique to infer shapes of heap structures. Our approach
uses field-based Boolean variables along with field-sensitive
path matrices to infer the shapes of pointer variables in terms
of Boolean equations. The path matrices help in remembering

connectivity information of pointers, while the field-based
Boolean variables help in remembering the exact updates
affecting the shapes. This allows our analysis to generate
precise kill information for field updates, thereby capturing
the shape transitions from Cycle to DAG, from Cycle to Tree
and from DAG to Tree.

We have shown some scenarios that can be handled more
precisely by our analysis as compared to existing field-
insensitive analyses. To show the effectiveness of our analy-
sis, we implemented our analysis as a plug-in for GCC
version 4.5.0. The implementation is an instance of call-
string-based interprocedural data-flow analysis framework.
We evaluated our analysis on standard benchmarks and
showed that the results are more precise than an existing field-
insensitive analysis. We have shown some enhancements that
can be easily incorporated in our analysis to increase its effec-
tiveness in some cases.

Our shape analysis can be used by compilers for optimiza-
tions, parallelization and verification. There is a lot of scope
to improve the memory and the time required by the analy-
sis. We plan to implement with a demand-driven variation of
the analysis that can switch between precision (field sensitiv-
ity) and speed (field insensitivity) depending on the needs of
the target application. We also plan to implement and eval-
uate the enhancements to our analysis, namely Shape-based
context-sensitive interprocedural analysis and Field-subset-
based analysis, in near future.
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