
Our Approach

❖ Enables direct analysis of binary

❖ Enables automated binary formal reasoning

❖ Checking accuracy of ISA specification

❖ Post-silicon processor validation

❖ Security vulnerability on binary code

❖ Compiler verification (e.g. Compcert, CakeML)

Defining formal semantics of user-level x86-64

A Complete Formal Semantics of x86-64 User-Level ISA

❖ 996 unique mnemonics with 3736 variants

❖ Inconsistent behavior of instruction variants

❖ 3000+ pages of informal prose + pseudo-code

❖ Implementation defined behavior

❖ Ambiguous specification

ISA Semantics is Useful

x86-64 Spec Challenges

Previous Work

Project Name Details

x86-64 semantics by Goel et

al.

33% user-level

support

x86-64 semantics by Heule et

al. [PLDI’16]

60% user-level

support

Projects hosting x86-32 spec

❖ Compcert

❖ Rocksalt

[PLDI’12]

❖ Myreen et. al.

[FMCAD’08]

Indirect semantics of x86-64 e.g. BAP, Angr etc.

Scope

github.com/kframework/X86-64-semantics Accepted in PLDI’19

Validated porting

using SMT checks

SMT

formula

SMT

formula

✓ Modeling %af flag & “undef”

behavior

✓ Validated “Generalization” to

memory & immediate variants

Strata BVL*

semantics

(60% user-level
instructions) ✓ Formula Simplification*

✓ Formula count Reduction

Augmented &

faithful
Semantics

Simplified

Semantics

BVL → K

translator

Semantics

using K rewrite
rules

Intel informal
specifications

(for 40% user-
level

instruction) Manually translating Intel spec to K rules

SMT formulas obtained using
symbolic-execution of an

instruction implementation

Potential Applications

Instruction level testing

x86-64 instruction +
input state

GDB script for

native execution

output
state

K interpreter

output
state

Each instruction’s semantics is tested against hardware
using 7000+ input states

Stoke

symex-engine

z3 summaries, obtained from K rules, of ~336
instructions are compared against that Stoke’s

*symex-engine: symbolic execution engine

z3
formula

Comparing against Stoke

Instruction
semantics

in K

Instruction
semantics

in Stoke

K

symex-engine*

z3
formula

❖ Intel Manual (8+ instances)

❖ Strata’s simplification rules (2 instances)

❖ Stoke’s semantics (40+ instances)

Bugs Found

Program level testing

x86-64 program

GDB script for

native execution

output
state

K interpreter

output
state

All the programs in GCC-C torture are co-simulated
against hardware

Validation

Translation validation of binary decompilation

❖ Program verification

❖ Security vulnerability tracking

❖ Translation validation of compiler optimization

What’s Next ?

*Strata [PLDI’16] synthesizes
instruction semantics as bit-vector

logic (BVL) formulas

*We have 30+ simplification rules
e.g. BVL formula of shrxl containing

8971 terms simplified to 7 terms

Decompiled LLVM

K Equivalence

Checker

x86-64
Semantics

LLVM
Semantics

x86-64 code

Equiv. or not

