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Abstract. In this paper we demonstrate a novel intra-procedural technique for de-
tecting heap dependences in sequential programs that use recursive data structures.
The novelty of our technique lies in the way we compute, for each statement, ab-
stractheap access pathsthat approximate the locations accessed by the statement,
and the way we convert these paths into equations that can be solved using tradi-
tional tests, e.g. GCD test, Banerjee test and Lamport test.The dependence test also
uses a field sensitive shape analysis to detect dependences among heap locations
arising out of sharing within the data structure. In presence of loops, the technique
can be used to discoverloop dependences. i.e. the dependence among two differ-
ent iterations of the same loop. This information can be usedby a parallelizing
compiler to transform sequential input program for better parallel execution.
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Introduction

In the recent arena of parallel architectures (multi-cores, GPUs, etc.), software side lags
behind hardware in terms of parallelism. Parallelization of sequential programs, with-
out violating their correctness, is a key step in increasingtheir performance and effi-
ciency. Over the past years, lot of work has been done on automatically parallelizing
sequential programs. These approaches have mainly been developed for programs writ-
ten in languages, such as FORTRAN, having only static data structures (fixed sized ar-
rays) [1,2,3,4]. Almost all programming languages today use the heap for dynamic mem-
ory structures. Therefore, any parallelization must also take into account the data de-
pendency due to the access of common heap locations. Findingparallelism in sequen-
tial programs written in languages with dynamically allocated data structures, such as C,
C++, JAVA, LISP etc., has been less successful. One of the reason being the presence of
pointer-induced aliasing, which occurs when multiple pointer expressions refer to same
storage location. Compared to the analysis of static and stack data, analyzing properties
of heap data is challenging because the structure of heap is unknown at compile time,
it is also potentially unbounded and the lifetime of a heap object is not limited by the
scope that creates it. As a consequence, properties of heap (including dependence) are
approximated very conservatively. The approximation of the heap dependence informa-
tion inhibits the parallelization. The following example motivates the need for a precise
dependence analysis.
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num is the data field.
next is the pointer to the next element.

...
S1. p = list;

while (p→next != NULL) {
S2. q = p→next;
S3. ...= q→num;
S4. r = q→next;
S5. r→num = ...;
S6. p = r;

}
...

(a) A singly linked list (b) Code traversing the list

Figure 1. A motivating example

Example 1 Figure 1 shows a singly linked list and a code fragment traversing that list.
The performance of the code can be improved if the loop can be executed in parallel.
However, without the knowledge of precise heap dependences, we have to assume worst
case scenario, i.e., the location read by the statementS3 in some iteration could be the
same as the location written by the statementS5 in some other iteration. In that case, it
is not possible to parallelize the loop.

Our dependence analysis can show that the locations read byS3 and those written by
S5 are mutually exclusive. Further, it also shows the absence of any other dependences.
This information, along with the information from classical control and data dependence
analysis, can be used by a parallelizing compiler to parallelize the loop.

The rest of this paper explains our approach for a practical intra-procedural heap data
dependence analysis. As it is understood that we are only talking about data dependences,
we drop the term data in the rest of the paper. We first describea shape analysis that is
used by our analysis to detect sharing (also called interference) among the data structures
created on the heap. The details of dependence analysis are explained next. We then
present our method to handle loops in a more precise way. We finish the paper by giving
the directions for the future research.

1. Shape Analysis

The goal of our shape analyzer is to detect the shape of the data structure pointed to by
the heap directed pointers at each program point. Our approach is similar to the work
proposed by Ghiya et. al. [5] in that it also uses theDirection Matrixand theInterference
Matrix to keep track of shapes of data structures. However, our shape analysis isfield
sensitive; it remembers abstracted paths between two heap nodes. The path abstraction is
done by using fixed length prefixes (sequence of field names) ofthe paths between two
heap nodes. As the number of paths starting with the same fixedlength prefixes may be
unbounded so we use k-limiting on that number i.e. only k suchpaths will be considered.

The novelty of our approach lies in the way we use field information to remember
the paths that result in a particular shape (Tree, DAG, Cycle). We associate the field
information with a shape in two ways: (a) through boolean functions that capture the
shape transition due to change in a particular field, and (b) through matrices that store



the field sensitive path information among two pointer variables. This allows us to easily
identify transitions from Cycle to DAG, from Cycle to Tree and from DAG to Tree, thus
making the shape more precise. This is an improvement over earlier approaches like
Ghiya et. al. [5] where once a data structure is marked cyclic, it remains so for the rest
of the analysis.

For dependence detection, our shape analysis technique provides an interface
function isInterfering(p, α, q, β). For heap pointersp, q and field sequences
α,β,α′,β′, this function returns true if the pathsp.α′ andq.β′ interfere (potentially reach
the same heap node at run-time), andα′ andβ′ are prefixes ofα andβ respectively. The
result of the interface function is based on the following observations:

1. If the shape attribute of a pointer variable is Tree, then two access paths rooted at
that variable cannot interfere. Two access paths can only visit a common node if
the paths are equivalent. Letlp be the pointer variable. Hencelp→f andlp→f
are equivalent paths leading to a common node, whereaslp→f andlp→g lead
to different nodes.

2. If the shape attribute is DAG and if it is traversed using a sequence of fields,
then every sub-sequence accesses a distinct node. If an access path is a proper
sub-path of another access path then they surely visit distinct nodes. However,
if the paths equivalent or distinct (i.e. having different pointer field references),
they may access a common node. For example,lp→f is a proper sub-path of
lp→f→g whereas,lp→f andlp→g are not. Hence in the former case they do
not share a common node, whereas in later case they might result in sharing of
node.

3. If shape attribute of a pointer variable is Cycle, we make conservative decision
such that the access paths originating from that pointer interfere.

The details of the path abstraction and the shape analysis can be found elsewhere [6].

2. Dependence Analysis

Two statements are said to be heap dependent on each other if both statements access
the same heap location and at least one of the statements writes to that location. We
have developed a novel technique which finds out heap induceddependencies, between
any two statements in the program. The novelty of our approach lies in the separation
of shape analysis phase from the dependence detection phaseFor each statement our
analysis computes two sets of heap access paths (a)Read set: the set of paths which are
accessed to read a heap location, and (b)Write set: the set of paths which are accessed to
write a heap location.

Our approach is conservative in the sense that the read set and write set we compute
for a statement are over approximations of the actual locations that are read or written
by the statement. Therefore it is possible that our analysisreports two statement to be
dependent when they are not really dependent on each other. However, this can inhibit
some parallelizing optimization but can not result in an incorrect parallelization. Func-
tion calls are handled by using conservative read/write sets that over approximate the
heap locations that could potentially be read or written inside the called function.



analyze(f, k) {
initialize(); /⋆ Initialize all parameters and globals ⋆/
States = computeStates(k)
computeReadWrite(States)

}

Figure 2. Algorithm to analyze a functionf for dependence detection. Parameterk is used for limiting the
length of access paths, to keep the analysis bounded.

Figure 2 gives top level pseudo code for analyzing a functionf in the program. The
pseudo codes for the utility functions used by the above codeis given in [7]. We describe
their functionality in brief.

Functioninitialize() initializes the parameters of the function and global vari-
ables with symbolic values. The initialization information is also accessible to the shape
analyzer that requires it for making interference decisions.

The functioncomputeStates(k) computes the bindings of pointer variables to
the access paths using traditional iterative data flow analysis. The access paths are ei-
ther symbolic locations, e.g.l0, or symbolic location followed by pointer fields, e.g.
l0 →next→next. To guarantee termination, we limit the length of access paths tok,
that is a parameter tocomputeStates. A special summary field ‘∗’ is used to limit
the access paths. which stands for any field dereferenced beyond lengthk. Hence,
for k = 1, all the access paths in the set {l0→next→next, l0→next→next→next,
l0→next→next→next· · · →next} can be abstracted as a single summarized path
l0→next→ ∗. Similarly, assuming a data structure has two reference fields left and
right, the summarized pathl0 → left → right → ∗ could stand for any of the ac-
cess pathsl0 → left→ right → left, l0 → left→ right → right, l0 → left→
right→ left→ left, l0 → left→ right→ left→ right and more such paths.

Given a variable to access path mappingStates, computeReadWrite(States)
computes read and write sets for each statement in the program in a single pass. This
information can be used for computation of various dependencies (flow, anti or output).
Let SandS′ be statements in the program such that there exists an execution path fromS
to S′. Then, the dependence ofS′ onS is computed as follows:

interfere(set1, set2) ≡ isInterfering(p,α,q,β) wherep.α ∈ set1∧q.β ∈ set2
flow-dep(S,S′) ≡ interfere(write(S), read(S′))
anti-dep(S,S′) ≡ interfere(read(S), write(S′))

output-dep(S,S′) ≡ interfere(write(S), write(S′))

where isInterfering is the function provided by shape analysis.

Example 2 Table 1 shows the state (pointer variables and symbolic memory locations
referred by the variables) and the read and write sets for each statement in the example
code of Figure 1. From the table, we can infer the following dependences:

1. loop independent anti-dependence from statement S3 to statement S5
2. loop carried flow-dependence from statement S5 to statement S3

Note that the dependences inferred by our analysis are a super-set of actual dependences
that exist in the program.



Table 1. Simple dependence analysis for code in Figure 1

Stmt Variables and Locations of Interest Read Set Write Set

S1 p≡ { l0} /0 /0
S2 q≡ { l0 →next, l0 →next→∗} /0 /0
S3 q≡ { l0 →next, l0 →next→∗} { l0 →next, l0 →next→∗} /0
S4 r≡ { l0 →next→∗} /0 /0
S5 r≡ { l0 →next→∗} /0 { l0 →next→∗}

S6 p≡ { l0 →next→∗} /0 /0
l0 is the symbolic location representing the value of the variable list at the start of the program.

Next we explain how we can further refine our dependence analysis to filter out some
spurious dependences.

3. Loop Dependence Analysis

As can be seen from the Example 2 above, our approach, as explained earlier, does not
work well for loops. This is because it combines the paths being accessed in different
iterations of a loop. To get better result in presence of loops we need to keep the accesses
made by different iterations of a loop separate. To do so, we have devised another novel
approach, which works as follows: Given a loop, we first identify the navigators1 [8] for
the loop, then by a single symbolic traversal over the loop, we compute the read and
write accesses made by each statement in terms of the values of the navigators. Using
the iteration number as a parameter, the read and write sets are generalized tosymbolic
access paths[9] to represent arbitrary iteration of the loop.

Let SandS′ be two statements inside a loop. Further, let write(S, i) denote the set of
access paths written by statementS in the iteration numberi, and let read(S′, j) denote
the set of access paths read by statementS′ in the iteration numberj. Then,

• S′ is loop independent flow dependent onS if there is an execution path fromS
to S′ that does not cross the loop boundary and there existi within loop bounds2

such thatinterfere(write(S, i), read(S′, i)) is true.
• S′ is loop dependent flow dependent onS if there existi and j within loop bounds

such thatj > i, andinterfere(write(S, i), read(S′, j)) is true.

We can similarly define loop independent and loop carried anti-dependence and
flow-dependence. The following example explains our approach for the loop dependence
detection.

Example 3 Consider Figure 3. Assume in each casel0 is the symbolic variable pointed
to by the variablelist.

For the code in Figure 3(a), the navigator is〈l0,next→ next〉. Usingi to represent
the iteration number, the generalized access path read by S11 is l0→ next2i → next and
the generalized access path written by S12 isl0→ next2i+1 → next Clearly there is no
loop independent dependence. To find out loop carried dependence, we have to find out

1a navigator consists of a pointer variable and a set of field references that are used to traverse a data structure
inside the loop.

2in case loop bounds can not be computed at compile time, we canassume them to be(−∞,∞)



...
p = list;
while (p->next != NULL) {

S11. ...= p->next->num;
S12. p->next->next->num = ...;
S13. p = p->next->next;

}
...

...
p = list;
while (p->next != NULL) {

S21. ...= p->next->num;
S22. p->next->next->num = ...;
S23. p = p->next;

}
...

(a) Loop without Dependence. (b) Loop with Dependence.

Figure 3. Identifying Loop Dependences

whether for iterationsi and j, the two paths point to the same heap location. This reduces
to finding out if there is a possible solution to the followingequation:

l0 → next2i → next = l0 → next2 j+1 → next

In other words, we have to find out if the following equation has integer solutions:

2∗ i = 2∗ j +1

GCD [4] or Lamport [10] test tell us that this equation can nothave integer solutions.
Thus, there is no dependence among the statements.

For the code in Figure 3(b), the navigator is〈l0,next〉. In this case the equation to
find out the loop carried dependences among statements S21 and S22 reduces to:

i = j +1

which has integer solutions. So we have to conservatively report dependence between
the two statements

In both the cases, we also need the shape analyzer to assert that there is no sharing
within the underlying data structure. Had there been a sharing, we would have to report
conservatively that there exists a dependence.

4. Related Work

Data dependence analysis for sequential programs, workingon only static and stack re-
lated data structure, such as array, is well explored in literature [1,3,2,4] etc. Our work
extends the work to handle heap data structure. Various approaches have been suggested
for data flow analysis of programs in the presence of dynamic data structures. We de-
scribe briefly some of the earlier work done in this area.

The work by Hendren et al. in [11] considers shape information and approximates
the relationships between accessible nodes in larger aggregate data structures. These re-
lationships are represented by path expressions, a restricted form of regular expressions,
and are encoded in path matrices. Such matrices are used to deduce the interference in-
formation between any two heap nodes, and to extract parallelism. Their method focuses
on three levels of parallelization; (a) if two statements can be executed in parallel, (b)
identifies procedure-call parallelism, and (c) whether twosequences of statements can
be parallelized.



Ghiya et. al. [8] uses coarse characterization of the underlying data structure as
Tree, DAG or Cycle. They compute complete access paths for each statement in terms of
anchorpointer, which points to a fixed heap node in the data structure within the whole
body of the program. The test for aliasing of the access paths, relies on connection and
shape information that is automatically computed. They have also extended their work
to identify loop carried dependences for loop level parallelism.

Hwang and Saltz [12] present a technique to identify parallelism in programs with
cyclic graphs. The method identifies the patterns of the traversal of program code over the
underlying data structure. In the next step the shape of the traversal pattern is detected. If
the traversal pattern is acyclic, dependence analysis is performed to extract parallelism
from the program.

Navarro et. al. in [13,14] propose a intra-procedural dependence test which inter-
mixes shape analysis and dependence analysis together. During the analysis, the abstract
structure of the dynamically allocated data is computed andis also tagged with read/write
tags to find out dependencies. The resulting analysis is veryprecise, but it is costly. Fur-
ther their shape analysis component is tightly integrated within the dependence analy-
sis, while in our approach we keep the two separate as it givesus modularity and the
scope to improve the precision of our dependence analysis byusing a more precise shape
analysis, if available. They have extended their dependence related work in [15], where
they have implemented a context-sensitive interprocedural analysis which successfully
detects dependences for both non-recursive and recursive functions.

Work done by Marron et. al. in [16] tracks a two program location, one read and
one write location, for each heap object field. The techniqueuses an explicit store heap
model which captures the tag information of objects for eachprogram statement. The
read and write information are used to detect dependences. This space effective and time
efficient technique analyses bigger benchmarks in shorter time. But the effectiveness of
this approach lies in the use of predefined semantics for library functions [17], which
recognizes a traversal over a generic structure.

Our approach is closest to the technique proposed by Horwitzet. al. [18]. They also
associate read and write sets with each program statement todetect heap dependencies.
They have also proposed technique to compute dependence distances for loop constructs.
However, there technique requires iterating over a loop till a fixed point is reached, which
is different from our method of computing loop dependences as a set of equations in a
single pass, and then solving these equations using classical tests.

5. Conclusion and Future Work

In this report we have presented our work on heap dependence analysis that can be uti-
lized by a parallelizing compiler to parallelize sequential programs. Our method is di-
vided into three phases - the shape analysis phase, the statecomputation phase, and the
loop analysis phase, with carefully chosen interfaces between phases to combine work
done by individual phases. This gives us the flexibility to work on testing and improv-
ing each phase independently. Our loop dependence analysisabstracts the dependence
information in forms of linear equations, that can be solvedusing traditional dependence
analysis tests [1,3,2] that exist for finding array dependences.

Our analysis is intra-procedural, and we use conservative approximation of func-
tion calls assuming worst case scenario. Our next challengeis to develop an inter pro-



cedural analysis to handle function calls more precisely. We have to further develop our
shape analysis technique and the loop analysis to handle more of frequently occurring
programming patterns to find precise dependences for these patterns. We also want to
improve our summarization technique. Earlier we have used graph based approximations
of access paths [19] to compute liveness of heap data. We planto explore if the same
summarization technique can also be applied here.

Finally, to show that our analysis is practical, we are developing a prototype model
using GCC compiler framework to show the effectiveness on large benchmarks. How-
ever, this work is still in very early stages.

References

[1] Randy Allen and Ken Kennedy. Automatic translation of fortran programs to vector form.ACM Trans.
Program. Lang. Syst., 9, 1987.

[2] Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and David A. Padua. Automatic program par-
allelization, 1993.

[3] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to maximize parallelism.
IEEE Trans. Parallel Distrib. Syst., 2, 1991.

[4] Ken Kennedy and John R. Allen.Optimizing compilers for modern architectures: a dependence-based
approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[5] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or acyclic graph? a shape analysis for heap-
directed pointers in C. InProceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’96, New York, NY, USA, 1996. ACM.

[6] Sandeep Dasgupta. Precise shape analysis using field sensitivity. Master’s thesis, IIT Kanpur, 2011.
http://www.cse.iitk.ac.in/users/karkare/MTP/2010-11/sandeep2010precise.pdf.

[7] Barnali Basak. Heap dependence analysis for sequentialprograms. Master’s thesis, IIT Kanpur, 2011.
http://www.cse.iitk.ac.in/users/karkare/MTP/2010-11/barnali2010heap.pdf.

[8] Rakesh Ghiya, Laurie Hendren, and Yingchun Zhu. Detecting parallelism in C programs with recursive
data structures. InCompiler Construction. 1998.

[9] Alain Deutsch. Interprocedural may-alias analysis forpointers: beyond k-limiting. InProceedings of
the ACM SIGPLAN 1994 conference on Programming language design and implementation, PLDI ’94,
New York, NY, USA, 1994.

[10] Leslie Lamport. The parallel execution of DO loops.Commun. ACM, 17, 1974.
[11] L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data structures.IEEE Trans.

Parallel Distrib. Syst., 1, 1990.
[12] Yuan-Shin Hwang and Joel H. Saltz. Identifying parallelism in programs with cyclic graphs.J. Parallel

Distrib. Comput., 63, 2003.
[13] A. Navarro, F. Corbera, R. Asenjo, A. Tineo, O. Plata, and E. Zapata. A new dependence test based on

shape analysis for pointer-based codes. InLang. and Comp. for High Performance Computing. 2005.
[14] A. Tineo, F. Corbera, A. Navarro, and E. L. Zapata. A novel approach for detecting heap-based loop-

carried dependences. InProceedings of the 2005 International Conference on Parallel Processing,
Washington, DC, USA, 2005. IEEE Computer Society.

[15] R. Asenjo, R. Castillo, F. Corbera, A. Navarro, A. Tineo, and E. Zapata. Parallelizing irregular C codes
assisted by interprocedural shape analysis. In2nd IEEE International Parallel & Distributed Processing
Symposium, 2008.

[16] M. Marron, D. Stefanovic, D. Kapur, and M. Hermenegildo. Identification of heap-carried data depen-
dence via explicit store heap models. InLanguages and Compilers for Parallel Computing, 2008.

[17] M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegildo. A static heap analysis for shape and
connectivity. InLanguages and Compilers for Parallel Computing, 2006.

[18] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer variables. InProceedings of the
ACM SIGPLAN 1989 Conference on Programming language designand implementation, PLDI ’89,
New York, NY, USA, 1989. ACM.

[19] Uday P. Khedker, Amitabha Sanyal, and Amey Karkare. Heap reference analysis using access graphs.
ACM Transactions on Programming Languages and Systems, 30(1), 2007.


