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Abstract. In this paper we demonstrate a novel intra-procedural tqakrfor de-
tecting heap dependences in sequential programs thatagsive data structures.
The novelty of our technique lies in the way we compute, fahestatement, ab-
stractheap access pathibat approximate the locations accessed by the statement,
and the way we convert these paths into equations that caohmdusing tradi-
tional tests, e.g. GCD test, Banerjee test and Lamportfastdependence test also
uses a field sensitive shape analysis to detect dependemoes) deap locations
arising out of sharing within the data structure. In pregsenfdoops, the technique
can be used to discovéwop dependencese. the dependence among two differ-
ent iterations of the same loop. This information can be used parallelizing
compiler to transform sequential input program for bettafiel execution.
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Introduction

In the recent arena of parallel architectures (multi-coB#Us, etc.), software side lags
behind hardware in terms of parallelism. Parallelizatiérsequential programs, with-
out violating their correctness, is a key step in increasivar performance and effi-
ciency. Over the past years, lot of work has been done on aticeily parallelizing
sequential programs. These approaches have mainly beeloped for programs writ-
ten in languages, such as FORTRAN, having only static datiatstes (fixed sized ar-
rays) [1,2,3,4]. Almost all programming languages todaythe heap for dynamic mem-
ory structures. Therefore, any parallelization must atde tinto account the data de-
pendency due to the access of common heap locations. Fipdiradjelism in sequen-
tial programs written in languages with dynamically all@zhdata structures, such as C,
C++, JAVA, LISP etc., has been less successful. One of thedrelaeing the presence of
pointer-induced aliasing, which occurs when multiple peirexpressions refer to same
storage location. Compared to the analysis of static arod stata, analyzing properties
of heap data is challenging because the structure of heagkisown at compile time,
it is also potentially unbounded and the lifetime of a heajgahis not limited by the
scope that creates it. As a consequence, properties of eypding dependence) are
approximated very conservatively. The approximation eftieap dependence informa-
tion inhibits the parallelization. The following exampleotivates the need for a precise
dependence analysis.



S1. p = list;
while (p—next = NULL) {

S2. q = p—next;
0 next |—| next |—| next | S3. ... = g—=num
~ [Tnum num num || SA r = g—next;
S5. r—num=...;

S6. p=r;

numis the data field. }
next is the pointer to the next element. o
(a) A singly linked list (b) Code traversing the list

Figure 1. A motivating example

Example 1 Figure 1 shows a singly linked list and a code fragment tisixgrthat list.
The performance of the code can be improved if the loop carxbeuwted in parallel.
However, without the knowledge of precise heap dependeneelsave to assume worst
case scenario, i.e., the location read by the stateSgim some iteration could be the
same as the location written by the staten&nin some other iteration. In that case, it
is not possible to parallelize the loop.

Our dependence analysis can show that the locations reg8dnd those written by
S5 are mutually exclusive. Further, it also shows the abseheayother dependences.
This information, along with the information from clasdicantrol and data dependence
analysis, can be used by a parallelizing compiler to pdizdi¢he loop. 0O

The rest of this paper explains our approach for a practitiad-iprocedural heap data
dependence analysis. As it is understood that we are okingehbout data dependences,
we drop the term data in the rest of the paper. We first desarifeape analysis that is
used by our analysis to detect sharing (also called intenf®) among the data structures
created on the heap. The details of dependence analysix@ened next. We then
present our method to handle loops in a more precise way. \fgh fime paper by giving
the directions for the future research.

1. Shape Analysis

The goal of our shape analyzer is to detect the shape of thaesttatcture pointed to by
the heap directed pointers at each program point. Our apprigasimilar to the work
proposed by Ghiya et. al. [5] in that it also useshrection Matrix and theinterference
Matrix to keep track of shapes of data structures. However, oureshaglysis idield
sensitiveit remembers abstracted paths between two heap nodesaitalystraction is
done by using fixed length prefixes (sequence of field name$egbaths between two
heap nodes. As the number of paths starting with the sameléxreggth prefixes may be
unbounded so we use k-limiting on that number i.e. only k qaths will be considered.
The novelty of our approach lies in the way we use field infdiamato remember
the paths that result in a particular shape (Tree, DAG, Qydée associate the field
information with a shape in two ways: (a) through boolearcfioms that capture the
shape transition due to change in a particular field, andhffough matrices that store



the field sensitive path information among two pointer Maldga. This allows us to easily
identify transitions from Cycle to DAG, from Cycle to Treechfiom DAG to Tree, thus
making the shape more precise. This is an improvement ovéereapproaches like
Ghiya et. al. [5] where once a data structure is marked cyitliemains so for the rest
of the analysis.

For dependence detection, our shape analysis techniquédesoan interface
functionisinterfering(p, o, g, B). For heap pointer, q and field sequences
a,B,a’,, this function returns true if the patipsa’ andq.p’ interfere (potentially reach
the same heap node at run-time), al@ndp’ are prefixes ofi andp respectively. The
result of the interface function is based on the following@tvations:

1. If the shape attribute of a pointer variable is Tree, themdccess paths rooted at
that variable cannot interfere. Two access paths can osiyaszcommon node if
the paths are equivalent. Ligt be the pointer variable. Hente—f andl p—f
are equivalent paths leading to a common node, wheneag andl p—g lead
to different nodes.

2. If the shape attribute is DAG and if it is traversed usingeguence of fields,
then every sub-sequence accesses a distinct node. If assguath is a proper
sub-path of another access path then they surely visindtstiodes. However,
if the paths equivalent or distinct (i.e. having differewiger field references),
they may access a common node. For example;f is a proper sub-path of
| p—f —g whereas| p—f andl p—g are not. Hence in the former case they do
not share a common node, whereas in later case they mighi iresharing of
node.

3. If shape attribute of a pointer variable is Cycle, we mateservative decision
such that the access paths originating from that pointerfierte.

The details of the path abstraction and the shape analysisecbound elsewhere [6].

2. Dependence Analysis

Two statements are said to be heap dependent on each otloth iftatements access
the same heap location and at least one of the statemenés woitthat location. We
have developed a novel technique which finds out heap inddependencies, between
any two statements in the program. The novelty of our apprdias in the separation
of shape analysis phase from the dependence detection phasach statement our
analysis computes two sets of heap access patlite@) setthe set of paths which are
accessed to read a heap location, and\(hje set the set of paths which are accessed to
write a heap location.

Our approach is conservative in the sense that the readdetréa set we compute
for a statement are over approximations of the actual lopatthat are read or written
by the statement. Therefore it is possible that our anahggisrts two statement to be
dependent when they are not really dependent on each otbeeuér, this can inhibit
some parallelizing optimization but can not result in aroimect parallelization. Func-
tion calls are handled by using conservative read/write 8t over approximate the
heap locations that could potentially be read or writtefid@she called function.



anal yze(f, k) {
initialize(); /= Initialize all paraneters and globals «/
States = conputeStates(k)
conmput eReadW i t e( St at es)

}

Figure 2. Algorithm to analyze a functiofi for dependence detection. Paramétés used for limiting the
length of access paths, to keep the analysis bounded.

Figure 2 gives top level pseudo code for analyzing a fundtionthe program. The
pseudo codes for the utility functions used by the above &ogieen in [7]. We describe
their functionality in brief.

Functioni ni ti ali ze() initializes the parameters of the function and global vari-
ables with symbolic values. The initialization informatiis also accessible to the shape
analyzer that requires it for making interference decision

The functionconput eSt at es(k) computes the bindings of pointer variables to
the access paths using traditional iterative data flow &iglyrhe access paths are ei-
ther symbolic locations, e.do, or symbolic location followed by pointer fields, e.g.
lo —next —next. To guarantee termination, we limit the length of accestipéik,
that is a parameter toonput eSt at es. A special summary field«" is used to limit
the access paths. which stands for any field dereferenceahtegngthk. Hence,
for k = 1, all the access paths in the ség-{rnext —next, lo—next —next —next,
lo—next —next —next --- —next} can be abstracted as a single summarized path
lo—next — . Similarly, assuming a data structure has two referenceasfledft and
ri ght, the summarized patly — l eft — right — % could stand for any of the ac-
cess pathg) — left —right —left, lp—>left —right —»right, lp—1left —
right —left —»left,lo—left —right —left —right and more such paths.

Given a variable to access path mappBigt es, conput eReadW it e( St at es)
computes read and write sets for each statement in the pnogra single pass. This
information can be used for computation of various depecigsr{flow, anti or output).
Let SandS be statements in the program such that there exists an éxepath fromS
to S. Then, the dependence 8fon Sis computed as follows:

interfere(set, seb) = isInterferindp,a, g, B) wherep.a € set A Q.3 € seb
flow-defdS,S) = interfere(write(S), readS))
anti-degS, S) = interfere(read’S), write(S))
output-degS, S) = interfere(write(S), write(S))

where isInterfering is the function provided by shape asialy
Example 2 Table 1 shows the state (pointer variables and symbolic mginoations

referred by the variables) and the read and write sets fdr siatement in the example
code of Figure 1. From the table, we can infer the followingefedences:

1. loop independent anti-dependence from statement Satensent S5
2. loop carried flow-dependence from statement S5 to staie88

Note that the dependences inferred by our analysis are &sapef actual dependences
that exist in the program. 0



Table 1. Simple dependence analysis for code in Figure 1

Stmt | Variables and Locations of Interest Read Set Write Set
S1 | p={lo} 0 0
S2 | g={lp —next,lo—next — x} 0 0
S3 | g={lo —next,lp —next — x} {lp —next, lg —next — «} 0
S4 | r={lp —next — %} 0 0
S5 | r={lgp —next — x} 0 {lo —next — *}
S6 | p={lop —next — x} 0 0

lg is the symbolic location representing the value of the Weihi st at the start of the program.

Next we explain how we can further refine our dependence sisatyfilter out some
spurious dependences.

3. Loop Dependence Analysis

As can be seen from the Example 2 above, our approach, asregkarlier, does not
work well for loops. This is because it combines the pathadpeiccessed in different
iterations of a loop. To get better result in presence of $owp need to keep the accesses
made by different iterations of a loop separate. To do so,ave evised another novel
approach, which works as follows: Given a loop, we first idfgrihe navigator$ [8] for
the loop, then by a single symbolic traversal over the loop,cempute the read and
write accesses made by each statement in terms of the vdlties wavigators. Using
the iteration number as a parameter, the read and write ietgeaeralized tgymbolic
access path] to represent arbitrary iteration of the loop.

Let SandS be two statements inside a loop. Further, let wWBt& denote the set of
access paths written by statem&ih the iteration numbei;, and let rea(S, j) denote
the set of access paths read by staterSeimtthe iteration numbej. Then,

e S is loop independent flow dependent 8if there is an execution path fro®
to S that does not cross the loop boundary and there esihin loop bound$
such thatnterfere(write(Si), readS,i)) is true.

e S isloop dependent flow dependent®if there existi and j within loop bounds
such thatj > i, andinterfere(write(S,i), readS, j)) is true.

We can similarly define loop independent and loop carriedtdepiendence and
flow-dependence. The following example explains our apgrdar the loop dependence
detection.

Example 3 Consider Figure 3. Assume in each césis the symbolic variable pointed
to by the variablé i st .

For the code in Figure 3(a), the navigato(lignext — next ). Usingi to represent
the iteration number, the generalized access path readbis &L+ next 2 — next and
the generalized access path written by S1I34s next 2+1 — next Clearly there is no
loop independent dependence. To find out loop carried depeedwe have to find out

1a navigator consists of a pointer variable and a set of fiétteaces that are used to traverse a data structure
inside the loop.
2; o
in case loop bounds can not be computed at compile time, wassaime them to bg-o, o)



p = list; p = list;
while(p->next != NULL) { while(p->next != NULL) {
Si1. ... = p->next->num S21. ... = p->next->num
S12. p->next - >next->num = ..., S22. p- >next - >next ->num = ... ;
S13. p = p->next->next; S23. p = p->next;
} }
(a) Loop without Dependence. (b) Loop with Dependence.

Figure 3. Identifying Loop Dependences

whether for iterationsandj, the two paths point to the same heap location. This reduces
to finding out if there is a possible solution to the followieguation:
t2 2141 _ next

lo — next < — next =g — next

In other words, we have to find out if the following equatiors lidteger solutions:
2xi=2xj+1

GCD [4] or Lamport [10] test tell us that this equation can hate integer solutions.
Thus, there is no dependence among the statements.

For the code in Figure 3(b), the navigator(ig,next ). In this case the equation to
find out the loop carried dependences among statements 82322reduces to:

i=j+1

which has integer solutions. So we have to conservativglgntedependence between
the two statements

In both the cases, we also need the shape analyzer to asgdhdte is no sharing
within the underlying data structure. Had there been a shawe would have to report
conservatively that there exists a dependence.

4. Related Work

Data dependence analysis for sequential programs, wodkiranly static and stack re-
lated data structure, such as array, is well explored irglitee [1,3,2,4] etc. Our work
extends the work to handle heap data structure. Variousappes have been suggested
for data flow analysis of programs in the presence of dynarmaia dtructures. We de-
scribe briefly some of the earlier work done in this area.

The work by Hendren et al. in [11] considers shape infornmadind approximates
the relationships between accessible nodes in larger ggigrdata structures. These re-
lationships are represented by path expressions, a testfa@rm of regular expressions,
and are encoded in path matrices. Such matrices are useduoeithe interference in-
formation between any two heap nodes, and to extract pksaillelheir method focuses
on three levels of parallelization; (a) if two statements ba executed in parallel, (b)
identifies procedure-call parallelism, and (c) whether sgquences of statements can
be parallelized.



Ghiya et. al. [8] uses coarse characterization of the upiieyldata structure as
Tree, DAG or Cycle. They compute complete access paths ébrgtatement in terms of
anchorpointer, which points to a fixed heap node in the data straatithin the whole
body of the program. The test for aliasing of the access pagliss on connection and
shape information that is automatically computed. Theyehalgo extended their work
to identify loop carried dependences for loop level paliate.

Hwang and Saltz [12] present a technique to identify pdrsifein programs with
cyclic graphs. The method identifies the patterns of thestisal of program code over the
underlying data structure. In the next step the shape ofdlveitsal pattern is detected. If
the traversal pattern is acyclic, dependence analysisrferpged to extract parallelism
from the program.

Navarro et. al. in [13,14] propose a intra-procedural depece test which inter-
mixes shape analysis and dependence analysis togethargEhe analysis, the abstract
structure of the dynamically allocated data is computedsatso tagged with read/write
tags to find out dependencies. The resulting analysis ispregise, but it is costly. Fur-
ther their shape analysis component is tightly integratédinvthe dependence analy-
sis, while in our approach we keep the two separate as it gisenodularity and the
scope to improve the precision of our dependence analysisibg a more precise shape
analysis, if available. They have extended their depereleziated work in [15], where
they have implemented a context-sensitive interprocedunaysis which successfully
detects dependences for both non-recursive and recutsietdns.

Work done by Marron et. al. in [16] tracks a two program locatione read and
one write location, for each heap object field. The technigges an explicit store heap
model which captures the tag information of objects for gadgram statement. The
read and write information are used to detect dependenhesspace effective and time
efficient technique analyses bigger benchmarks in shanter. But the effectiveness of
this approach lies in the use of predefined semantics faarlbiunctions [17], which
recognizes a traversal over a generic structure.

Our approach is closest to the technique proposed by Hoelvitd. [18]. They also
associate read and write sets with each program statemdatdot heap dependencies.
They have also proposed technique to compute dependertaedds for loop constructs.
However, there technique requires iterating over a lobp fiked point is reached, which
is different from our method of computing loop dependencea aet of equations in a
single pass, and then solving these equations using chssits.

5. Conclusion and Future Work

In this report we have presented our work on heap dependeadyses that can be uti-
lized by a parallelizing compiler to parallelize sequelnpieograms. Our method is di-
vided into three phases - the shape analysis phase, thestafritation phase, and the
loop analysis phase, with carefully chosen interfaces éetwphases to combine work
done by individual phases. This gives us the flexibility torkvon testing and improv-
ing each phase independently. Our loop dependence analysiiicts the dependence
information in forms of linear equations, that can be solusitig traditional dependence
analysis tests [1,3,2] that exist for finding array depedsn
Our analysis is intra-procedural, and we use conservappeoximation of func-

tion calls assuming worst case scenario. Our next challentgedevelop an inter pro-



cedural analysis to handle function calls more precisebly.Hake to further develop our
shape analysis technique and the loop analysis to handle afidrequently occurring
programming patterns to find precise dependences for theserps. We also want to
improve our summarization technique. Earlier we have usaplgbased approximations
of access paths [19] to compute liveness of heap data. Wet@lexplore if the same
summarization technigue can also be applied here.

Finally, to show that our analysis is practical, we are depiglg a prototype model
using GCC compiler framework to show the effectiveness ogeldbenchmarks. How-
ever, this work is still in very early stages.
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