
Scalable Validation of Binary Lifters

Sandeep Dasgupta
University of Illinois at
Urbana-Champaign

USA
sdasgup3@illinois.edu

Sushant Dinesh
University of Illinois at
Urbana-Champaign

USA
sdinesh2@illinois.edu

Deepan Venkatesh
University of Illinois at
Urbana-Champaign

USA
deepanv2@illinois.edu

Vikram S. Adve
University of Illinois at
Urbana-Champaign

USA
vadve@illinois.edu

Christopher W. Fletcher
University of Illinois at
Urbana-Champaign

USA
cwfletch@illinois.edu

Abstract

Validating the correctness of binary lifters is pivotal to gain
trust in binary analysis, especially when used in scenarios
where correctness is important. Existing approaches focus
on validating the correctness of lifting instructions or basic
blocks in isolation and do not scale to full programs. In this
work, we show that formal translation validation of single in-
structions for a complex ISA like x86-64 is not only practical,
but can be used as a building block for scalable full-program
validation. Our work is the first to do translation validation
of single instructions on an architecture as extensive as x86-
64, uses the most precise formal semantics available, and has
the widest coverage in terms of the number of instructions
tested for correctness. Next, we develop a novel technique
that uses validated instructions to enable program-level val-
idation, without resorting to performance-heavy semantic
equivalence checking. Specifically, we compose the validated
IR sequences using a tool we develop called Compositional
Lifter to create a reference standard. The semantic equiva-
lence check between the reference and the lifter output is
then reduced to a graph-isomorphism check through the use
of semantic preserving transformations. The translation val-
idation of instructions in isolation revealed 29 new bugs in
McSema ś a mature open-source lifter from x86-64 to LLVM
IR. Towards the validation of full programs, our approach
was able to prove the translational correctness of 2254/2348
functions taken from LLVM’s single-source benchmark test-
suite.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI ’20, June 15ś20, 2020, London, UK

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00
https://doi.org/10.1145/3385412.3385964

CCS Concepts: ·General and reference→ Validation; ·
Software and its engineering→ Formal language def-

initions; Compilers.

Keywords: x86-64, Translation Validation, Formal Seman-
tics, LLVM IR, Compiler Optimizations, Graph Isomorphism

ACM Reference Format:

Sandeep Dasgupta, Sushant Dinesh, Deepan Venkatesh, Vikram
S. Adve, and Christopher W. Fletcher. 2020. Scalable Validation of
Binary Lifters. In Proceedings of the 41st ACM SIGPLAN International

Conference on Programming Language Design and Implementation

(PLDI ’20), June 15ś20, 2020, London, UK. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3385412.3385964

1 Introduction

The ability to directly reason about binary machine code
is desirable, not only because it allows analyzing binaries
even when the source code is not available (e.g., legacy code,
closed-source software, or malware), but also because it
avoids the need to trust the correctness of compilers [17, 81].
Analyzing binary code is important in certain subfields of
software engineering and security tools, including binary in-
strumentation [21, 22, 51, 54, 64], binary re-targeting [29, 36],
software hardening [25, 38, 85, 86], software testing [16, 28,
39], CPU emulation [19, 55], automated reverse engineer-
ing [5, 13, 30, 53, 67, 70, 83], sand-boxing [37, 48, 84], profil-
ing [41, 79], and automatic exploit generation [24].

To reason about binary code, binary analysis frameworks,
e.g., [8, 13, 23, 67, 75], first convert raw bytes from the bi-
nary into a stream of instructions through disassembly. To
enable greater retargetability of the frameworks to multi-
ple instruction sets, these tools often use a binary lifter to
lift (or translate) all supported instructions to a uniform in-
termediate representation (IR), and then apply architecture-
independent passes on this IR. After lifting, several analysis
passes may operate on the IR to: (i) recover higher-level
constructs, such as functions, stack frames, variables, and
types, (ii) re-target to a different ISA, or (iii) instrument and
recompile the binary for various purposes. Many binary
analysis frameworks published in academia [23, 78], or as

655

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3385412.3385964
https://doi.org/10.1145/3385412.3385964

PLDI ’20, June 15ś20, 2020, London, UK S. Dasgupta, S. Dinesh, D. Venkatesh, V.S. Adve, and C.W. Fletcher

open-source code [7, 8, 13, 34, 67, 75], use such a lifter as the
first step in their pipeline.

Developing a lifter, especially for complex modern ISAs, is
challenging and error-prone [59], mainly because manually
encoding the effects of a vast number of instructions (and
their variants) is hard. This is made even harder because the
informal specifications provided by the hardware manufac-
turers of most of the ISAs run into thousands of pages [1, 10],
have mistakes [32], or allow for implementation-dependent
undefined behaviors. Once such a lifter is developed, the
developers then run into the problem of not having a way
to test their implementation thoroughly, as generally, there
are no formal, machine-readable semantics available for au-
tomated testing. Lastly, to make it worse, these lifters need
to be updated and rechecked for correctness every time new
instructions are added to an ISA.

Despite the correctness challenges in binary lifting, such
lifters are sometimes used for tasks where correctness is
especially important, e.g., when looking for security vulner-
abilities in binary code, binary emulation of one processor
ISA on another, or recompiling embedded software to run
on new platforms. Beyond these more critical tasks, gaining
confidence in binary lifters through effective validation tech-
niques is also generally crucial for developers of decompilers,
especially for complex ISAs.

Surprisingly, there has been very limited work to date on
validating the correctness of binary decompilers, and that
work has focused on the translation of single instructions
or basic-blocks. All of this existing work falls short in at
least one of the following criteria: (i) require random test-
inputs which leads to incomplete coverage [26, 57, 58], (ii)
do not scale to full program translation validation [46, 56],
or (iii) require modification of the lifting frameworks un-
der test to emit additional information required to prove
correctness [42].

Our goal is to develop formal and informal techniques to
achieve high confidence in the correctness of a lifter from a
complex machine ISA (e.g., X86-64) to a rich IR (e.g., LLVM
IR). Our approach is inspired by a key observation that most
decompilers [3, 5, 7, 13, 20, 23, 27, 34, 35, 47, 49, 67, 77, 78] are
designed to perform simple instruction-by-instruction lifting
(using a fixed and canonical representation of architectural
state at the IR level), followed by standard IR optimization
passes to achieve simpler IR code. We capitalize on this ob-
servation by deriving the following insight:

Formal translation validation of single machine instructions
can be used as a building block for scalable full-program trans-
lation validation.
With that insight, the overview of our approach is as fol-

lows: First, given the formal semantics of x86-64 and LLVM
IR, we formally validate the translational correctness of in-
dividual instructions by asserting equivalence of symbolic
summaries of each x86-64 instruction and the corresponding

lifted LLVM IR sequence using an SMT solver. If the sum-
maries are equivalent, the lifted LLVM IR sequence is the
correct translation of the instruction, else the equivalence
check fails, and the solver generates a counter-example that
we use to report a bug. Second, for program-level valida-
tion, we compose these validated sequences of instructions
using a tool we developed, called Compositional Lifter, to
form a reference translation (T′). Next, we transform T (the
IR program generated by the lifter we wish to validate) and
T′, one function at a time, using semantics-preserving trans-
formations, to prune any syntactic differences except for the
names of virtual registers and the order of non-dependent
instructions. Finally, we check if the data dependence graphs
corresponding to the transformed function pairs F & F′, of
T and T′ resp., are isomorphic in which case the two lifted
sequences (T & T′) are deemed as semantically equivalent.
The four key contributions of our work are:

1. We develop the first single instruction translation val-
idation framework for x86-64. Our work applies the
most precise formal semantics for x86-64 known to date,
and has the most comprehensive coverage in terms of
the number of instructions tested when compared to
earlier work [46]. We experimentally verify that such
single instruction validation is capable of finding bugs,
and in particular, we find discrepancies in the lifting
of 29 instructions in McSema [8, 67], a well-tested, ma-
ture [6], and open-source lifter from x86-64 to LLVM
IR, clearly showing the effectiveness of our technique.
All of these discrepancies have been confirmed as bugs
in the lifter by the McSema developers.

2. Given a lifter (D), we show that we can construct an
alternate lifter, called Compositional Lifter (D′), which
essentially concatenates the lifted IR sequences for
individual instructions (which are proven correct by
part 1, above) to provide a reference translation T′.
We do not provide a formal guarantee that the above
composition T′, of validated lifted IR sequences, is the
correct translation of P. However, the tool is exceed-
ingly simple to construct and we added it to our trust
base. More importantly, the translation T′ generated
by the Compositional Lifter is syntactically very sim-
ilar to the translation (say T) generated by the lifter
we aim to validate. Such code similarity serves as a
foundation for scaling translation validation to full
programs.

3. We propose a scalable approach for full-program trans-
lation validation that does not require heavyweight
symbolic execution or theorem provers. Our key in-
sight is that there exists a semantics-preserving trans-
formation Ð dubbed a canonicalizerÐ for each pair of
functions F and F′ of T and T′, say canonical(F)
and canonical(F′), such that, stated informally,
we can check if F and F′ are semantically equivalent by

656

Scalable Validation of Binary Lifters PLDI ’20, June 15ś20, 2020, London, UK

checkingwhethercanonical(F) andcanonical(F′)
have isomorphic data dependence graphs. If such a
canonicalizer exists, then we can reduce the prob-
lem of program-level semantics checking to a much
cheaper graph-isomorphism check! In this work, we
construct an approximation of a canonicalizer, called
Transformer, out of a very short sequence of 17 man-
ually selected LLVM passes, of which 11 are trans-
formation passes. The lifted functions F & F′ being
syntactically very close to begin with, we found such
an approximation to work quite well. For example, the
data dependence graphs extracted from the optimized
versions when matched for graph isomorphism yield
a low false-alarm rate of 7% based on our evaluation
setup (Section 6). Moreover, we improved the match-
ing results by employing an autotuner to automatically
discover pass sequences, for each pair of F & F′, by
searching over the manually-identified 17 optimiza-
tion passes. This approach reduces the false-alarm rate
from 7% to 4%, and with fewer passes, on average 8
instead of 17.

Our validation framework is publicly available at [31].
The rest of this paper proceeds as follows. The next sec-

tion gives a high-level overview of our approach, followed by
information on building blocks used in our work (Section 3),
description of our approach (formal single-instruction trans-
lation validation, Section 4 and full-program translation val-
idation, Section 5), detailed experimental evaluations (Sec-
tion 6), discussion on the limitations and avenues for future
work (Section 7), details on related work (Section 8), and
conclusion (Section 9).

2 Approach Overview

In this section, we provide a high-level overview of the two
main components of our approach, i.e., single-instruction
translation validation and program-level validation. Before
we begin, we first describe the scope to which our approach
is currently applicable.
Applicability of ourApproach.Our techniques are gen-

erally applicable to verify binary lifters from any ISA, e.g.,
x86, ARM, RISC-V, PowerPC, to an intermediate representa-
tion, such as LLVM IR [50], VEX IR [64] etc., as long as (a)
formal semantics for both the ISA and the target languages
are available, and (b) the target language can be transformed
to a canonical representation through a series of semantics-
preserving transformations. Through the rest of this paper,
we fix our discussion to lifting x86-64 to LLVM IR using the
most mature, open-source lifter McSema [67]. Our canoni-
calizer is approximated using a subset of LLVM optimization
passes. Other notable lifters [7, 34] from x86-64 to LLVM IR
may be directly supported in our framework through min-
imal engineering effort. Additionally, we restrict our work
to the common case of compiler-generated binaries, and we

do not consider binaries that are deliberately obfuscated to
deter reverse engineering, which is in-line with previous
work on translation validation. Lastly, as we aim to validate
the lifted code and do not focus on finding bugs lower in
the pipeline, e.g., in the loading and disassembly of binaries.
This is orthogonal to our work and has been shown to be
relatively mature for the typical case of compiler-generated
binaries [14].

Our overall approach is a composition of two techniques,
as shown in Figure 1, to validate the translation of an x86-64
program P to a lifted LLVM IR program T using a lifter D.

Single-Instruction Translation Validation The goal
of single-instruction translation validation, as shown in Fig-
ure 1(a), is to formally validate the translation of individual
instructions of P in isolation using the following steps: (i)
Each x86-64 instruction I is lifted to an LLVM IR sequence S
using the lifter D (McSema in our case), (ii) Next, we identify
the input/output variable correspondence between I and
S, i.e., we determine a mapping of registers/memory in I
to IR entities in S, (iii) Using the formal semantics of the
x86-64 and IR, we perform symbolic execution to generate
symbolic summaries for I and S, (iv) Lastly, we say S is
the correct translation of I if the corresponding summaries
are semantically equivalent. We employ the Z3 [33] solver
for the equivalence checks. If the two summaries mismatch,
meaning we find a bug, which is then reported. Otherwise,
we add the pair <I,S> to a database (called Store), keyed by
I, allowing reuse of the validation result.

Program-Level Validation The program-level valida-
tion, as shown in Figure 1(b), aims to validate that the lifted
LLVM program T, generated by a lifter D, is the correct
translation of binary program P. The key idea behind the
validation strategy is to propose an alternate LLVM program
T′ as a reference translation to be compared against T. The
translation T′ is generated using a tool we developed, called
Compositional Lifter, by carefully composing the validated
lifted IR sequences corresponding to the individual binary
instructions of P. The validated IR sequences are provided
by the single-instruction translation validation technique
above. The composition T′ preserves the data- & control-flow
of the original binary-program P and, more importantly, is
syntactically very close to the original lifted IR T.

Next, we seek to compare T and T′ one function at a time.
Towards that goal, we use a set of 17 manually discovered
LLVM optimization passes to close the syntactic gap between
every pair of corresponding functions, F & F′ of T & T′ resp.,
except for the names of virtual registers and the order of non-
dependent instructions. We compare the data dependence
graphs extracted from the optimized pair of functions by a
Matcher based on graph isomorphism (refer to Section 5.2).
The isomorphism of data dependence graphs, for each pair
of optimized functions, implies that the original lifted IR T is
semantically equivalent to the reference translation T′, and

657

PLDI ’20, June 15ś20, 2020, London, UK S. Dasgupta, S. Dinesh, D. Venkatesh, V.S. Adve, and C.W. Fletcher

x86-64
Instruction, I (of P)

Lifter,D

(under test)

IR Sequence, S

Symbolic Ex.

w/ x86-64 model

Symbolic Ex.

w/ IR model

Verification Condition Generator

Z3 Solver

R == unsat
Report
Bug

(a) Single Instruction Validation

Symbolic
Summary

(summaryx86−64)

Symbolic
Summary

(summaryir)

Verification Condition
z3.solve(summaryx86−64 , summaryir)

R

no

Database,Store

(I,S), ...

yes

x86-64 Program, P

Compositional

Lifter,D ′
Lifter,D

(under test)

Transformer Transformer

Matcher

M == equiv

(b) Program-level Validation

Potential
Bug ✓

Proposed IR, T ′ Lifted IR, T

Canonical
IR, N ′

Canonical
IR, N

Matcher Results,M

no yes

Address Reloc.
info. R of P

Figure 1. Overview diagram of the translation validation framework

therefore T is the correct lifting of the input binary program.
Otherwise, the automatic validation fails, and mismatch re-
ported as a potential bug for further analysis. The reason that
we can get false alarms (i.e., even if F and F′ are semantically
equivalent, the data dependence graphs extracted from their
optimized versions are not isomorphic) because the selected
LLVM passes may not be effective in reducing F and F′ to
isomorphic graphs.
Composing the Techniques In essence, the two tech-

niques are independent, and their results do not depend on
the other, with one minor caveat: the results from program-
level validation, either a complete equivalence match, or
a potential mismatch, are not sound until the IR instruc-
tion sequences used to construct T′ are validated by the
single-instruction translation validation. However, the or-
dering between the two techniques does not matter, i.e.,
single-instruction translation validation may be done offline;
either ahead of time, when composing instruction during
program-level validation, or done in a batch after program-
level validation.

3 Preliminaries

In this section, we provide background on various pieces
used in our work.

McSema. McSema [67] is a mature, well tested, open-
source lifter to raise binaries from x86-64 instructions to
LLVM bitcode. At a high level, McSema is split into two
parts: (a) front end, and (b) back end. The front end is respon-
sible for parsing, loading, and disassembling a binary and
exports an interface to the back end to query for the required
information, e.g., the defined symbols, sizes of various binary
sections, instruction listings, etc. The back end then uses this
information and Remill [8] library to lift the individual in-
structions. McSema supports multiple different front ends
with IDA Pro being the most robust, and supported option.

Conceptually, the implementation of McSema’s back end
is fairly straightforward: McSema exposes all of the archi-
tecture state, i.e., the program registers, conditional flags,
and program memory, through an LLVM struct, aptly named
State, which is passed as an argument to every lifted func-
tion. McSema simply scans through the disassembly of the
binary and lifts each instruction one by one, emitting code
to read and/or update the members of the struct based on
the semantics of the lifted instruction. In essence, the code
lifted by McSema simply encodes the operational semantics
of the binary in LLVM IR.

658

Scalable Validation of Binary Lifters PLDI ’20, June 15ś20, 2020, London, UK

x86-64 Formal Semantics. Our current work uses state-
of-the-art x86-64 semantics, developed in our previous open-
sourced work [32], which presented the most complete, thor-
oughly tested formal semantics of x86-64 to date, and faith-
fully formalizes all non-deprecated, sequential user-level in-
structions of x86-64 Haswell instruction set architecture. The
specification covers 774 mnemonics, and each mnemonic ad-
mits several variants (3155 in total), depending on the types
(i.e., register, memory, or constant) and the size (i.e., the
bit-width) of operands. The semantics, defined in K [71], is
executable (i.e. allows concrete execution), and comes with
a symbolic execution engine automatically generated by the
K framework1.

LLVM IR Formal Semantics. We use the LLVM formal
semantics [45], defined in K, which models LLVM types (in-
tegers, composite arrays, structs and their corresponding
pointers), the getelementptr instruction (used to com-
pute the address of an element nested within a aggregate
data-structure), integer arithmetic & comparison operators,
memory operations (load, store, and alloca), control
flow instructions for unconditional and conditional branches,
as well as function calls and returns. However, the seman-
tics does not support floating-point, vector types, and most
LLVM intrinsic functions. As a result, we cannot validate the
translation validation of certain binary instructions whose
lifted IR includes such unsupported constructs. This is a lim-
itation of the available LLVM semantics and not a limitation
of our work.

4 Single-Instruction Translation
Validation

The single-instruction translation validation is responsible
for validating the lifting (using McSema) of an x86-64 in-
struction I to LLVM IR sequence S. This is achieved by (1)
Establishing variable correspondence between I and S, (2)
Generating symbolic summaries individually for I and S for
each output variable, (3) Generating verification conditions
meant to establish semantic equivalence between the cor-
responding pair of summaries, and solving those using an
SMT solver (Z3). Next, we describe each one of these steps.

(1) Establishing variable correspondence: łVariable cor-
respondencež between I and S refers to identifying the cor-
respondence between the input/output variables of I and
those of S. By input (resp., output) variables of an instruction
we mean implicit and explicit register/memory/flags which
are read (resp., written). By input (resp., output) variables
of an lifted IR sequence S we mean the IR variables which
are used to simulate the input (resp., output) variables of

1Given a syntax and a semantics of a language, K automatically generates
a parser, an interpreter, a symbolic execution engine, as well as formal
analysis tools such as model checkers and deductive program verifiers, at
no additional effort.

I. This information is valuable in setting up pre-conditions
over corresponding input variables and post-conditions over
output variables, thereby assisting the equivalence proofs
between I and S.
As described in Section 3, McSema models the hardware

architecture state using a State structure which holds all the
simulated hardware registers at different offsets in the struc-
ture. Hence, the input and output variables in the context of
McSema are particular struct fields, identified by constant off-
sets. As an example, for an instructionadcq %rax, %rbx,
the input variables are %cf, %rax & %rbx, and output vari-
ables are%rbx,%cf,%pf,%sf,%zf,%of, and%af. The fol-
lowing shows how these input/output registers are mapped
to the McSema State structure in lifted LLVM code.

// State structure type with irrelevant fields replaced

// with “. . .”.

// The nested type “struct.GPR”, at offset 6, models the

// general-purpose simulated registers. Similarly, the

// type “struct.ArithFlags”, at offset 2, models the

// simulated status flags.

%struct.State 7→ type { %struct.ArchState, ...,

%struct.ArithFlags,..., ..., ..., %struct.GPR, ...}

// Pointers to simulated registers (or flags) are

// computed using LLVM's getelementptr instruction.

// The constant operands m and n are offsets to index to

// the different nested elements of an object pointed to

// by a base pointer “%state” of the above type,

// denoting field n within the nested struct at

// field m of structure “%struct.State”.

getelementptr inbounds %struct.State, %struct.State*
%state, i64 0, i32 m, i32 n, i32 0, i32 0

// Mapping of various simulated registers to

// getelementptr offsets.

rax 7→ m = 6 n = 1; rbx 7→ m = 6 n = 3

cf 7→ m = 1 n = 1; pf 7→ m = 1 n = 3

af 7→ m = 1 n = 5; zf 7→ m = 1 n = 7

sf 7→ m = 1 n = 9; of 7→ m = 1 n = 13

We use the above architectural state representation of Mc-
Sema to infer how the hardware registers or flags in the
binary instruction corresponds to the simulated version of
those in the corresponding lifted IR2.

(2) Generating symbolic summaries: TheK framework
takes the K-specification of x86-64 (resp., LLVM IR) as input
and automatically generates a symbolic execution engine
which we leverage to do symbolic execution of an x86-64 in-
struction (resp., the corresponding lifted LLVM IR sequence).
The result of symbolic execution on an x86-64 instruction
(resp., the corresponding lifted IR) is a set of summaries cap-
turing the output behaviors corresponding to each register,
flag, and clobbered memory (resp., the simulated version of
those in the lifted IR), expressed using K builtin operators
such as add, concat and extract, over the symbolic val-
ues assigned to the input variables. For the running example
of adcq %rax, %rbx, the following shows the symbolic

2LikeMcSema, fcd [7] has a similar approach to model the architectural state
and infer variable correspondence. In case of Rev.Ng [34], the architecture
registers are modeled as LLVM globals and variable correspondence refers
to the mapping between x86-64 registers with those globals.

659

PLDI ’20, June 15ś20, 2020, London, UK S. Dasgupta, S. Dinesh, D. Venkatesh, V.S. Adve, and C.W. Fletcher

summary corresponding to the output register %rbx3 (sum-
maries of other registers and flags are omitted).

// V_CF1, V_RAX64 and V_RBX64 are the symbolic values

// assigned to input variables. The subscript denotes

// the bit-width of the value. "extract" returns bits

// 1..64, where bit 0 is the most significant bit.

extract (

add (

(#if eq (V_CF1 , 11) #then

add (concat (01 , V_RAX64) , 165)

#else

concat (01 , V_RAX64)

#fi)

, concat (01 , V_RBX64),

)

1 , 65)

Similar symbolic summaries will be obtained for the sim-
ulated registers and flags in the lifter IR sequence, which is
omitted as well for brevity.
Most x86-64 instructions require a bounded (and small)

number of operations. However, the x86-64 ISA includes
instructions with Repeat String Operation Prefix (e.g. rep,
repz etc.) to repeat a string instruction the number of times
specified in the count register or until the indicated condition
by the prefix is no longer met. That is, their specification
involves a loop that the symbolic execution must handle.
Conceptually, such loops can be realized using a for loop
with index as the loop count decreasing by one in every iter-
ation and the body consists of a if check which can break the
loop if the indicated condition is met or the index reduces
to zero. These loops are bounded by the maximum value
the count register can hold and are simple as the index can-
not change in any other ways; thus the x86-64 instruction
will trivially terminate. In order to prove the equivalence
of the translation of such an instruction, we first set up the
precondition asserting that the register or memory value,
corresponding to the loop trip count, and the corresponding
simulated register in lifted IR are equivalent. Next, we sym-
bolically execute the instruction and its corresponding lifted
IR with a symbolic input state and comparing the summaries
(using solver checks) of any single ith iteration of the two
loops. This suffices to establish equivalence between the two
loops, by co-inductive reasoning [69] to check the behavior
of corresponding loops evolves in lock-step, and the fact that
such loops are bounded by a constant thus must terminate 4.

(3) Generating & Solving the verification conditions:
First, we convert the summaries written in K builtin opera-
tors to SMTLIB expressions. Given two symbolic summaries
summaryrbx

x86−64 and summaryrbx
ir

, for output x86-64 register

3All the values or addresses stored in registers, memory or flags are imple-
mented as bit-vectors and presented in this paper as VW to be interpreted
as a bit-vector of sizeW and value V .
4We manually inspect that the symbolic summaries corresponding to the
loop trip count decrements by one in every iteration when the indicated
condition is not met. Also, the count register is not modified in any other
way.

%rbx and corresponding simulated register, we emit a satis-
fiability query as follows, to be solved by an SMT solver like
Z3,

(assert (not (= summaryrbx
x86−64 summaryrbx

ir
)))

Similar queries are generated for all registers, flags, and clob-
bered memory. Moreover, we add pre-conditions asserting
the equivalence of input symbolic values assigned to the in-
put variables of the binary instruction and its corresponding
variables in the lifted IR. Note that we generate queries for
all registers/flags, not just the ones clobbered because the
registers and flags not modified by the instruction should
have equivalent summaries (which is the unmodified value
of the symbolic input value).

The verification condition queries are then dispatched to
the Z3 solver to prove equivalence between corresponding
summaries. When the query of non-equivalence is satisfiable,
the solver generates an example which can be used as a test
input to trigger the mismatch. Any such mismatches are
regarded as bugs in McSema and reported along with the
associated test inputs.
Even though we are using solver checks during the first

phase, this should not hamper the scalability of our pro-
gram validation pipeline for the following reasons. First, the
instruction-level validation is done for each instruction. Thus
its verification condition is much simpler than that of whole
program-level validation. Second, the validation result of
each instruction can be reused within a program or across
different programs; thus the validation cost can be amortized,
or done offline. Note that the reuse of validation results is
facilitated by the Store database (Figure 1).

Single-instruction translation validation of control-
flow instructions: The single-instruction translation vali-
dation for control-flow instructions, e.g., jump (condition-
al/unconditional) and call, is critical in preserving the control-
flow of the binary program in the McSema-lifted program.
A conditional jump instruction, e.g., jcc rel-offset

at program counter pc, evaluates the condition code cc
as an appropriate expression over the status flags, and up-
dates the %rip with either the address of the target instruc-
tion (pc + rel-offset) or of the fall-through instruc-
tion (pc + sizeof(jcc)). Such an instruction is lifted
to LLVM IR code with three goals: (1) computing the con-
dition code value, %cond, matching the value of cc; (2)
updating the value of the simulated register correspond-
ing to %rip; and (3) transferring control-flow to the appro-
priate basic block, using an LLVM branch instruction (e.g.,
br i1 %cond, label<LT>, label <LF>), based on
value of %cond.

The goals of single-instruction translation validation for
the running example of jcc are twofold: (A) to ensure that
the update of %rip by the binary instruction and of the cor-
responding simulated register in lifted LLVM IR are equiva-
lent, and (B) the LLVM br instruction should preserve the

660

Scalable Validation of Binary Lifters PLDI ’20, June 15ś20, 2020, London, UK

control-flow semantics of the corresponding binary instruc-
tion, i.e., the jcc and br instructions should evaluate equiv-
alent conditions (i.e., cc ≃ value of %cond) and based on
it’s evaluation the control should jump to corresponding tar-
gets, i.e., if %cond is true, then the basic block with label LT
should begin with an instruction corresponding to the tar-
get instruction at pc + rel-offset, else the basic block
with label LF should begin with an instruction correspond-
ing to the target instruction at pc + sizeof(jcc).

To ensure (A), we symbolically execute jcc (resp., corre-
sponding lifted IR) with concrete pc assigned to the %rip
(resp., corresponding simulated resister) and symbolic values
assigned to the status flags (resp., corresponding simulated
flags) affected by the condition code cc (resp., %cond). We
compare the resulting symbolic summaries, for the register
%rip and its simulated counterpart, for equivalence using
a solver preconditioned on the equivalence of respective
symbolic inputs.

To achieve (B), we exploit the observation that the lifted IR
encodes the target addresses of jcc instruction (or the po-
tential values of %rip) in the branch labels of the LLVM br

instruction5. An example of label LT is %block-4004b4,
where 4004b4 is the target address when the condition
code cc is satisfied. Moreover, we define an auxiliary state
in LLVM semantics which captures the embedded address of
the current block label. The symbolic execution of the lifted
IR, as mentioned above, also provides the summary of this
special state, which is compared for equivalence with the
summary of %rip with similar preconditions, as mentioned
above.

The single-instruction translation validation of other con-
trol flow instructions (like unconditional jump and call) are
handled similarly.

5 Program-Level Validation

The goal of program-level validation is to validate the trans-
lation of the input x86-64 program P to the McSema-lifted
LLVM IR program T. Towards that goal, the first step is to
construct an alternative program T′ generated using the
Compositional Lifter (Section 5.1), which is then compared
with T using the Matcher (Section 5.2).

5.1 Compositional Lifter

The Compositional Lifter is responsible for generating the
proposed LLVM IR T′ by composing the validated McSema-
lifted IR sequences of the constituent binary instructions
of the x86-64 program P. Importantly, the Compositional
Lifter design (Algorithm 1) is simple and took us about three
man-weeks to implement, mainly because it reuses the indi-
vidual instruction translations performed by McSema. These

5Similarly, for call instruction, the name of the lifted function call encodes
the target address of the callee.

are separately validated using single-instruction translation
validation, as described in the previous section.
P is disassembled to identify function boundaries, and to

decode instructions. If the decoded instruction I is already
in Store, then its corresponding (validated) IR sequence is
reused (line 13). Otherwise, I is lifted (using McSema) (line 5)
to generate an LLVM IR sequence that is going to be validated
using Phase 1 (lines 6-11). The validated IR sequences are
then composed (line 15) following the data- and control-flow
order of the binary program P.

Algorithm 1: Compositional Lifting

Inputs :

P: x86-64 binary program.
Store: Validated pairs (<I, S>) of instruction

I and lifted IR sequence S. (possibly empty)
R: Address Relocation information of binary P.

Output :Lifted IR Program T′

1 T ′← ϕ

2 foreach function F in P do

3 foreach instruction I in F do

4 if I not in Store then
5 S ←McSema (I)
6 Perform Translation Validation of I and S

(Phase 1)
7 if Validation successful then
8 Add < I , S > to Store
9 else

10 Report Bug
11 end

12 else

13 Extract S from Store for I
14 end

15 T ′← Compose(T ′, S,R)
16 end

17 end

18 return T ′

The łComposež step. Below we describe the step łCom-
posež (line 15), responsible for composing the IR sequences
together, using a few example binary instructions.
The composed program is initially empty. Upon encoun-

tering a function label, we append the following code to it6,
with an irrelevant argument omitted using ł. . . ž.

define %struct.Mem* @composedFunc(%struct.State* %st,

..., %struct.Mem* %mem) {}

For an instruction adcq %rax, %rbx, McSema gener-
ates the following IR sequence when lifted in isolation.

6mem is pointer to an opaque struct type which together with return type
allows ordering of memory operations if required.

661

PLDI ’20, June 15ś20, 2020, London, UK S. Dasgupta, S. Dinesh, D. Venkatesh, V.S. Adve, and C.W. Fletcher

define internal %struct.Mem* @ADCImpl(

%struct.Mem*, %struct.State*, i64*, i64, i64) {

; Does adc computation and updates destination RBX

; and flags (omitted for brevity)

}

define %struct.Mem* @sub_adcq_rax_rbx(

%struct.State* %st, ..., %struct.Mem* %mem) {

%RIP = getelementptr %st,...; %RIP: simulated %rip addr

%RAX = getelementptr %st,...; %RAX: simulated %rax addr

%RBX = getelementptr %st,...; %RBX: simulated %rbx addr

%VAL_RBX = load i64, i64* %RBX

%VAL_RAX = load i64, i64* %RAX

; RIP update based on instruction size

%VAL_RIP = load i64, i64* %RIP

%UPDATED_RIP = add i64 %VAL_RIP, 3 ; instr. len=3 bytes

store i64 %UPDATED_RIP, i64* %RIP

%retval = call %struct.Mem* @ADCImpl(

%struct.Mem* %mem, %struct.State* %st,

i64* %RBX, i64 %VAL_RBX, i64 %VAL_RAX)

ret %struct.Mem* %retval

}

The above sequence is then validated using single-instruction
translation validation unless it is already validated. Next, the
validated IR sequence is appended to the composed program
as shown below.

define %struct.Mem* @composedFunc(%struct.State* %st,

..., %struct.Mem* %mem) {

%MEM = alloca %struct.Mem*
store %struct.Mem* %mem, %struct.Mem** %MEM

; Code: adcq %rax, %rbx

%ldMem = load %struct.Mem*, %struct.Mem** %MEM

%retval = call %struct.Mem* @sub_adcq_rax_rbx(

%struct.State* %st, i64 0, %struct.Mem* %ldMem)

store %struct.Mem* %retval, %struct.Mem** %MEM

ret %struct.Mem* retval

}

; Definitions of called functions omitted for brevity

A similar composition happens for all the non control-flow
instructions. For a control-flow instruction, like jump (resp.,
call), in addition to appending the (validated) IR sequence
for the instruction, we need to generate the LLVM br (resp.,
call) instruction for the control-flow to jump to block(s) of
code corresponding to the jump (resp., call) target address(es).
The composition for instructions accessing data-section are
handled differently and elaborated next.

Composing data-section access instructions. Instruc-
tions accessing the data section, likemovq 0x602040, %rdi

with the first operand being an address, cannot be lifted
correctly in isolation because McSema does not have the
full-program context to determine if the immediate operand
is an integer or address. Depending on which section of the
isolated binary executable the address belongs, it can be in-
terpreted as a integer or an address7. However, the problem

7During single-instruction translation validation, we validated the behavior
of such instructions for both the possibilities of the constant operand by
forcing the constant to belong to .data or .text section of the isolated
binary.

is the program-level validation may not use that lifting be-
cause the interpretations of the immediate operand, when
lifted in isolation versus when lifted with full-program con-
text, might be different. As a result, the composed IR, which
consumes the translations of instructions in isolation, will be
different from the one lifted by McSema. Upon optimization
using LLVM passes, two such IRs will be optimized differ-
ently and eventually fail to match even when the translation
of McSema is correct.
To aid in testing, we compile binaries with options to

retain auxiliary information. To disambiguate between cases
where an immediate operand is a reference into the data
section (e.g., an int*) v/s a scalar (e.g., an int), we use
relocation information, denoted by R in algorithm 1. Every
immediate operand that is a reference has a corresponding
entry in the relocation table. We allow McSema to incorrectly
lift such instructions in isolation when invoked by algorithm 1,
and then we course-correct the lifted IR by consulting the
relocation information, R.

For example, the incorrect IR generated by McSema when
lifting movq 0x602040, %rdi in isolation is:

define %struct.Mem* @sub_movq_0x602040___rdi(

%struct.State* %st, ..., %struct.Mem* %mem) {

...

%retval = call %struct.Mem* @MOVImpl(

%struct.Mem* %mem, %struct.State* %st,

; data-section addr 0x602040

; lifted as a constant

%i64* %RDI, i64 6299712)

ret %struct.Mem* %retval

}

The address relocation information in the binary allows
us to identify the address and correct the lifted output:

%G_0x602040_type = type <{ [8 x i8] }>

@G_0x602040= global %G_0x602040_type zeroinitializer

define %struct.Mem* @sub_movq_0x602040___rdi(

%struct.State* %st, ..., %struct.Mem* %mem) {

...

%retval = call %struct.Mem* @MOVImpl(

%struct.Mem* %mem, %struct.State* %st,

%i64* %RDI,

i64 ptrtoint(%G_0x602040_type* @G_0x602040 to i64))

ret %struct.Mem* %retval

}

We reiterate that Compositional Lifter only uses relocation
information to strengthen the generated golden reference,
T′, when such information is available, e.g., during test or
development time. This allows for a tighter specification,
allowing our technique to find bugs (e.g., if the lifter is not
able to correctly disambiguate an address from a integer)
at testing that would otherwise be missed. During the use
of Compositional Lifter in the field to validate the lifting of
McSema on an unknown, blackbox binary, we can function
without the additional information, at the cost of potentially
missing bugs described above. Note that this is a fundamental
limitation because x86-64 semantics for an instruction has no
notion of types, and therefore T′, which is based on x86-64

662

Scalable Validation of Binary Lifters PLDI ’20, June 15ś20, 2020, London, UK

semantics, should allow for the ambiguity and cannot enforce
stricter type requirements. McSema, on the other hand, is
never given this additional information as it is expected
to work in the field where relocation information is rarely
available, except in library code.

5.2 Transformer & Matcher

Algorithm 2 summarizes our overall strategy to check equiv-
alence between the IRs generated by McSema (T) and Com-
positional Lifter (T′). Due to the nature of the composition, T
& T′ are structurally very similar. We build on this observa-
tion to develop an inexpensive semantic equivalence checker
that does not require heavyweight theorem provers, instead
using graph isomorphism, assisted by semantics-preserving
transformations (lines 2-3). The algorithm is realized by a
tool we develop called the Matcher (line 4).
At first, the function pair (F & F′) is transformed to (FN ,

F′
N
), using LLVM optimization passes8, to prune any syn-

tactic differences except for the names of virtual registers
and the order of non-dependent instructions. There is clearly
some important relationship between the syntactic code dif-
ferences in T and T′ and the choice of optimization passes
with the aim of exploiting those differences. As a few exam-
ples of syntactic differences: (1) Program counter updates
like %rip − C (C being a positive constant) are lifted in T′

using addition (%rip + (−C)) versus subtraction used in T,
and (2) As an optimization, T hoists the address computa-
tions of simulated registers to the entry block which are then
dereferenced at every use-site. On the other hand, in T′, such
addresses are both recomputed and dereferenced at every
use-site. Above syntactic differences are eliminated using (1)
-instcombine (a peephole optimization pass on LLVM
IR), and (2) -early-cse or -licm respectively.
Next, the Matcher algorithm works on data dependence

graphs, GFN & GF′
N
, generated from FN & F′

N
. A vertex of

the graph represents an LLVM instruction, and an edge be-
tween two vertices captures SSA def-use edges or memory
dependence edges between LLVM load and store instruc-
tions, extracted from LLVMMemorySSA [11] analysis. If the
Matcher fails to match T & T′, there may be a bug in the
lifter.

Checking Graph Isomorphism. Our algorithm to check
the isomorphism ofGFN &GF′

N
is built on a subgraph-isomor-

phism algorithm from Saltz et al. [68]. The algorithm, in
general, first retrieves an initial potential-match set, Φ, for
each vertex in one graph based on semantic and/or neighbor-
hood information in the other graph. In our case, the initial
potential-match set for a vertex IN in GFN contains all the
vertices in GF′

N
which satisfy the following three criteria: (1)

8The pass sequence (-mem2reg -licm -gvn -early-cse -globalopt -simplifycfg
-basicaa -aa -memdep -dse -deadargelim -libcalls-shrinkwrap -tailcallelim
-simplifycfg -basicaa -aa -instcombine) is determined by manually pruning
the LLVM -O3 sequence.

Algorithm 2: Matcher Strategy

Inputs :T:McSema-lifted IR.
T′: Compositional Lifter lifted IR.

Output :True =⇒ T & T′ semantically equivalent
False =⇒ T & T′ may-be non-equivalent

1 foreach corresponding function pair (F,F′) in (T, T′) do
2 FN = Transformer (F)
3 F′

N
= Transformer (F′)

4 if !Matcher(FN , F′N) then
// A potential bug in McSema while lifting F

5 return false

6 end

7 end

8 return true

they have the same instruction opcode, (2) they have iden-
tical constant operands, if any, and (3) they have the same
number of outgoing data dependence edges9 asIN . Then, the
algorithm iteratively prunes out elements from the potential
match set of each vertex based on its parents/child relations
until it reaches a fixed-point. Our overall algorithm,Matcher,
checks that the graphs GFN and GF′

N
are isomorphic and

the instructions corresponding to the matching vertices are
identical w.r.t. the instruction opcode and constant operands
(note that all other operands are SSA variables, and so are
validated by graph isomorphism).

Soundness of Equivalence via Graph Isomorphism.
Our argument that isomorphism of GFN & GF′

N
implies se-

mantic equivalence of the functions F and F′ is based on the
pioneering work by Horwitz et al., which proved that if the
program dependence graphs of two programs are isomorphic
then the programs are łstronglyž semantically equivalent [43].
Our dependence graph representations GFN and GF′

N
, which

we check for isomorphism, only include the data depen-
dences, and not the control dependences. Note, however,
that the close structural similarity between the functions, F
& F′, ensures the required equivalence of all control flow, as
explained below. There is one minor exception to control-
flow equivalence, which introduces no semantic differences
between the programs, and is addressed below. We first as-
sume this exception does not occur, and informally prove
semantic equivalence in three simple steps, as follows.
Let PDG(f) denote the program dependence graph of a

function f.
(A) The control flow graphs (CFGs) of F and F′ are

isomorphic: F and F′ are both obtained by lifting the same
binary, via instruction-by-instruction lifting (using identical

9Checking outgoing but not the incoming edges is a design choice. The
later check will constrain the the average size of the sets even more which
in turn improve the runtime of algorithm, but will not affect the soundness
of the matcher in any way.

663

PLDI ’20, June 15ś20, 2020, London, UK S. Dasgupta, S. Dinesh, D. Venkatesh, V.S. Adve, and C.W. Fletcher

IR sequences for each one). For F, we check that the order
of lifted IR sequences is the same as the order of binary in-
structions within each corresponding basic block. For F′,
such an order is already preserved assuming the correctness
of D′. The control-flow edges are verified to be identical by
the single-instruction translation validation of control-flow
instructions (Section 4). Together, these facts ensure isomor-
phism of the CFGs of F & F′. We note that the requirement
to preserve the order is stricter than necessary because data-
independent instructions can be reordered safely.
(B) The control dependence graphs of F and F′ are

isomorphic: This is straightforward to derive using (A) and
the definitions of control flow and control dependence [12],
and we omit the explanation.

(C) If the data dependence graphs GFN & GF′
N
are iso-

morphic, thenPDG(FN) andPDG(F
′
N
) are isomorphic:

By definition, the nodes of GFN are identical to the nodes
of PDG(FN), and similarly for GF′

N
and PDG(F′

N
). The

edges of a PDG are simply the union of the control depen-
dence edges and the data dependence edges. Combining (B)
with the isomorphism of GFN & GF′

N
, it follows directly that

PDG(FN) and PDG(F′
N
) are isomorphic.

The one exception mentioned above is that, as a custom
optimization, some address computations for simulated reg-
isters are hoisted to the entry block by McSema (i.e., in F),
to be reused by later instructions throughout the function,
whereas this hoisting does not happen in F′. The addresses
are computed using LLVM’s getelementptr instructions
whose operands are immutable throughout the function in
bothF andF′ (the State pointer (Section 4) and some constant
arguments). As a result, the results of these computations are
unaffected by their location in the code. One requirement is
that these address computations must dominate their uses
since their results are assigned to SSA values: this property
is enforced by McSema by running the LLVM verify pass
(which we also consider trusted). Together with the isomor-
phism of the data dependence graphs, this guarantees that
the potential difference in locations of these instructions does
not introduce any differences in any uses of those values, and
thus no differences in the semantics of the two functions.

Note that the entire above argument (indeed, the theorem
of Horwitz, et al. [43]) is independent of the precision of
any static analysis used to identify memory dependences. A
highly imprecise analysis (e.g., one that says every store-load
or store-store pair may be aliased) might lead to a failure
to prove isomorphism between T and T′, but will not claim
isomorphism if the two programs are not equivalent. In prac-
tice, we find in our experiments, described in Section 6, that
the memory dependence edges from such a highly imprecise
analysis do indeed reduce the success rate of the Matcher,
but only by a small amount. A more precise analysis may im-
prove the success rate, reducing the number of false alarms.

Autotuning-based Transformer. As per our matching
strategy, in order to prove that two functions F & F′ are
semantically equivalent, they need to be reduced to isomor-
phic graphs via semantic preserving transformations. For
transformations, we initially used a custom sequence of 17
LLVM optimization passes, discovered manually by pruning
the LLVM -O3 search space. Later experimentation revealed
that (1) changing the order of passes improves the number
of functions that are successfully proved isomorphic (the
phase-ordering problem of optimization), and (2) not all of
the 17 passes are needed for every pair of functions under
equivalence check. These two observations motivate us to
frame the problem of selecting optimal pass sequences, one
for every pair of candidate functions, as an application of
program autotuning.

We used the OpenTuner [15] framework to implement the
autotuner. OpenTuner requires the client to specify a search
space to explore, and an objective function to maximize.
Our search space is all permutations of passes from the 17-
length pass sequence. The objective function in our case is
to maximize the fraction of nodes in GFN (or GF′

N
) having

non-empty initial potential-match sets. The framework then
uses various heuristic search techniques to find the best
configuration that maximizes the objective function, within a
given resource budget (a fixed number of iterations). Such an
autotuning-based Transformer addresses the phase-ordering
problem, improving the Matcher results (refer to Section 6)
by lowering the false-alarm rate, and also by using much
fewer than 17 passes on average.

Comparison with LLVM-MD & Peggy. At this point, it
is important to differentiate our approach to establish equiv-
alence between two LLVM IR programs from existing, sim-
ilar approaches for validating LLVM IR-to-IR optimization
passes, e.g., LLVM-MD [82] and Peggy [80]. Like our ap-
proach, these tools eschew simulation proofs and instead use
graph isomorphism techniques to prove equivalence. Both
build graphs of expressions for each program, transform the
graphs via a series of łexpert-providedž rewrite rules, and
check for equality. The rewrite-rules mimic various compiler-
IR optimizations, and hence the technique is precise when
the output program is an optimization of the input program,
and the optimizations are captured by the rewrite rules.

Compared to these approaches, the implementation of our
Transformer is simpler, requires no additional implementa-
tion effort, re-uses existing, well-tested compiler passes, and
still proves to be quite effective in reducing two semantically
equivalent programs to isomorphic graphs, as demonstrated
by our evaluations.

6 Evaluation

In this section, we present the experimental evaluation of
single-instruction translation validation and program-level
validation. All the experiments are run on an Intel Xeon CPU

664

Scalable Validation of Binary Lifters PLDI ’20, June 15ś20, 2020, London, UK

E5-2640 v6 at 3.00GHz and an AMDEPYC 7571 at 2.7GHz.We
aim to address three questions through these experiments:

Q1. Is single-instruction validation by itself useful for finding
bugs in a sophisticated decompiler, even though no context
information is used during lifting?
Q2.What fraction of function translations are successfully
proven correct by program-level validation, and what is the
false alarm rate of the tool?
Q3.What is the runtime of our Compositional Lifter and
Matcher-based approach?
Q4. Is program-level validation effective at finding additional
real bugs in a complex lifter likeMcSema, beyond those found
by single-instruction translation validation alone?

Usefulness of single-instruction translation validation:

The goal here is to validate the lifting of individual x86-64 in-
struction to LLVM IR sequences using McSema. Haswell
x86-64 ISA supports a total of 3736 instruction variants,
of which 3155 are formally specified in [32]. McSema sup-
ports 1922 instructions, all supported by [32]. We had to
exclude 573 instruction variants because of limitations of
the LLVM IR semantics [45], which does not support vec-
tor and floating-point types and associated operations, and
various intrinsic functions10. This brings us to a total of
1349 viable instruction variants, and we apply translation
validation to each of them individually. Out of the 1349 trans-
lation validations, 29 cases fail (hence are bugs), producing a
counterexample for each failure, and 6 timed out. Except for
timeouts, the solver found conclusive results in all the cases
within a solver timeout of 30 secs. The solver time ranges
from 0.25 − 29.89 secs with median 0.46 secs. The max time,
recorded for cmpxchgq %rcx, %rbx, is because of the
complex summary of the corresponding lifted IR.
Timeouts, declared based on a threshold of 24 hrs, corre-

spond to paddb, psubb, and mulq family of instructions.
On further investigation, we found that 4 out of 6 timeouts
related to paddb and psubb are flaky: the Z3 solver result
toggled between unknown and unsat depending on the order
in which other unrelated constraints are added (which is a
known issue [4]). By removing the unrelated constraints11,
Z3 concludes them to be equivalent. The remaining two
cases (related to mulq) include solver constraints contain-
ing bit-vector multiplication, which the state-of-the-art SMT
solvers are not very efficient at reasoning about. However,
we manually inspected them to ensure that the generated
code fragments are indeed semantically equivalent.

The 29 failures along with the test cases created from Z3’s
counterexamples were all reported and subsequently con-
firmed as bugs [9] by the McSema developers. The following

10However, we support an intrinsic called llvm.ctpop by implementing it in
LLVM IR. This intrinsic is used pervasively in the lifted IR for updating the
%pf flag.
11The unrelated constraints refer to the verification queries related to regis-
ters/flags other than the one under verification.

are some brief examples of a few of the discrepancies we
found.
First, xaddq %rax, %rbx expects the operations (1)

temp← %rax + %rbx, (2) %rax← %rbx, and (3) %rbx
← temp, in that order. McSema performs the same operation
differently as (A) old_rbx ← %rbx, (B) temp ← %rax +
%rbx, (C) %rbx← temp, and (D) %rax← old_rbx. This
will fail to work when the operands are the same registers.

Second, for instruction andnps %xmm2, %xmm1, the
Intel Manual [10] says the implementation should be %xmm1
← ∼%xmm1 & %xmm2, whereas McSema interchanges the
source operands.
Third, for pmuludq %xmm2, %xmm1, both the higher

and lower double-words of the source operands need to
multiply, whereas McSema multiplies just the lower double-
words.

Fourth, forcmpxchgl %ecx, %ebx, McSema compares
the entire 64-bit %rbx (instead of just %ebx) with the accu-
mulator Concat(0x00000000, %eax).
Finally, for cmpxchgb %ah, %al, the lower 8-bits of

%rax should be replaced with the higher 8-bits (value of
%ah), whereas McSema keeps them unchanged.

Program-level validation: Success rate & false alarms:

The goal here is to validate the translation of programs, one
function at a time, using the Matcher strategy (Section 5.2).
For this purpose, we use programs from LLVM-8.0 łsingle-
source-benchmarksž. The benchmark suite consists of a total
of 102 programs, of which 11 cannot be lifted byMcSema due
to missing instruction semantics. The remaining programs
contain 3062 functions in total. We excluded 714 functions
because the corresponding binary uses floating-point instruc-
tions, which are not supported in the LLVM formal semantics
and hence could not be validated using single instruction
validation. This brings us to a total of 2348 usable functions,
which we compile using Clang12 and feed the binaries to
Compositional Lifter and McSema for lifting. The source
LOC of the usable functions ranges from 1 − 1454, with me-
dian 18, whereas the LOC of the corresponding lifted IR
(*.ll assembly files) after inlining, obtained by lifting the
binaries compiled from the source functions, ranges from
86 − 32105 (median 656), with maximum LOC recorded for
function łhimenobmtxpa::jacobiž.

The lifted function pairs are then optimized using the pass
sequence (of length 17) and fed to the Matcher (Algorithm 2).
Of the 2348 usable functions, the Matcher can prove the
correctness of the translations for 2189 functions using graph
isomorphism, i.e., a success rate of 93% (the inlined lifted IR
ranges in size from 86 − 32105, with the median as 611). We
manually checked the remaining 159 and found them to be
false alarms, with the following root causes:

12We also used GCC-compiled binaries for the experiments, but most of
them are not lifted by McSema due to unsupported instruction semantics.

665

PLDI ’20, June 15ś20, 2020, London, UK S. Dasgupta, S. Dinesh, D. Venkatesh, V.S. Adve, and C.W. Fletcher

• Pass Selection & Phase-ordering problem (80%
of false alarms): The fixed-length pass sequence is
not able to converge functions into isomorphic graphs
because either it missing some key passes or the order
of application of individual passes is not effective. We
addressed the above problems using autotuning of the
pass-sequence, as described below.
• Difference in Lifting globals (20% of false alarms):
For data section addresses, McSema lifts a global with
over-approximated size (as determined by IDA) which
need not be equal to the actual source code size, whereas
our Compositional Lifter determines the size as the
width of the maximum access across all the instruc-
tions accessing that particular global. As a result, the
lifted global sizes might be different from McSema.
The memory dependence edges that we extract using
LLVM IR memory-ssa analysis depend on the size
of the globals, and hence the generated graphs will
be different. A more accurate memory analysis might
solve these issues.

Overall, a false alarm rate of about 7% is low enough that
we believe our Matcher can be of practical use for validation
and testing of a lifter. We can further reduce this rate by
addressing the phase-ordering problem using an autotuner,
as described in Section 5.2. We leveraged the experience
and effort put into custom-designing the fixed-length pass
sequence by including the constituent passes in the search
space for autotuning. We avoided crafting the search space
using all the LLVM passes (e.g., 187 passes of Clang’s −O3
pass sequence) because our experiments showed that such a
large search space was less effective at avoiding false nega-
tives in a fixed number of iterations.
For 2254 out of the total 2348 functions, the autotuner is

able to find custom pass sequences that lead to successful
matching. These matches include 65 previously reported
false alarms (out of total 159), reducing total false alarms
to 94 (or 4% of 2348). All previously positive cases remain
positive with the autotuner, as well. The autotuner runtime
ranges from 10.7 secs - 19.97mins, with amedian of 6.67mins.
The length of the generated pass sequence has distribution
of [min:- 3, median:- 7, max:- 243, mean:- 8]13.

Judiciously adding LLVM passes to the search might help
remove false alarms further. We leave this as future work.

Performance of Program-level validation: The perfor-
mance of this phase is dominated by the time to run the
Compositional Lifter and Matcher.
We chose to validate the individual instructions offline

after program-level validation. The number of those instruc-
tions, to be validated offline, amounts to approx. 50% of

1343 out of 65 newly matched cases have an auto-tuned pass sequence of
length greater than 17. For those cases, the search space, with 17 passes being
ineffective, is composed differently out of multiple auto-tuned sequences
derived from the other matching cases.

Percentage of instructions reused

N
u
m

b
e
r

o
f
te

s
t−

fu
n
c
ti
o
n
s

0 20 40 60 80 100

0

200

400

600

800

1000

2 0 11 15
38

74

186

1072

950

Figure 2.Distribution of reuse % by the Compositional Lifter
in the Store database for an arbitrary execution sequence on
2348 test-functions.

the total 1349 variants we validated using single-instruction
translation validation; implying that only a small subset of
instructions are actually used in binary executables in prac-
tice.
The running time of the Compositional Lifter, on 2348

usable functions, ranges from 0.06s − 5.75s , with a median
of 0.63s . Note that this performance depends heavily on the
availability of instructions in the Store database for reuse,
which in turn depends on the order in which the test func-
tions are executed. For example, a large function with many
commonly occurring instructions, if lifted first using the
Compositional Lifter, will populate the Store sufficiently to
create good reuse in later functions. Even with an arbitrary
order of test execution, the Store reuse found is significant.
Figure 2 shows the distribution of reuse percentage (both
across & within functions) for an arbitrary order of lifter
execution on 2348 test-functions.
The running time of Matcher, primarily the graph iso-

morphism algorithm, on 2348 usable functions ranges from
0.06s−119.63s , with a median of 4.91s . We note that, for both
Compositional Lifter & Matcher, the max time occurred for
the largest function łhimenobmtxpa::jacobiž (32105 LLVM
assembly LOC).

Program-level validation: Effectiveness at finding bugs:

In our experiments, all real bugs in McSema were caught by
single-instruction translation validation and not program-
level validation, which may be evidence that most of the
complexity in lifting, by far, lies in lifting individual binary
instructions to IR. Intuitively, this makes sense because of
the large and diverse instruction set semantics, the simplicity
of the compositional step, and the fact that every aspect of
the composition logic is likely used hundreds of times per
program. Nevertheless, bugs are possible in this aspect of
the lifter.
We studied the effectiveness of program-level validation

in finding bugs in McSema by artificially injecting bugs in

666

Scalable Validation of Binary Lifters PLDI ’20, June 15ś20, 2020, London, UK

the lifter’s implementation. The injected bugs cover the fol-
lowing aspects of McSema’s lifting: (1) Instruction lifting:
McSema uses code templates to generate IR sequences for
each instruction. The injected bug forces the tool to choose
wrong templates. The injected bug is targeted to affect the
translation of 491 unique instruction mnemonics that we
collected from the compiled binaries of our evaluation test-
suite. (2) Inferring data-section access constants: McSema uses
information from IDA [40] to know if an immediate operand
used in a data-section access instruction is a constant or
a memory address. The introduced bug forces McSema to
take the wrong decision. (3) Maintaining correct dependences
among instructions: The injected bug changes the order in
which instructions are lifted, potentially violating data and
control dependences between instructions.
Each of the above bugs are injected one at a time and in

combination and the resulting buggy lifter is tested against
the Compositional Lifter on the same evaluation test-suite
mentioned before. All the injected bugs are correctly detected
by the Matcher, establishing program-level validation as a
complementary technique to single-instruction translation
validation in finding bugs during lifting.

Note that only the first of these bugs would be caught
by single-instruction translation validation: the binary in-
struction semantics would not match with the LLVM IR
sequence semantics in that case. The second and third cases
would (in general) produce equivalent semantics between
each X86 instruction and the LLVM IR sequence, and so
single-instruction translation validation would not detect
the bug.

7 Discussion

In this section, we discuss some limitations of our work and
avenues for future work.
Incomplete LLVMSemantics. The LLVM IR semantics [45]

is currently under development and does not support all
LLVM abstractions, e.g., vector and floating-point types and
their associated operations, and various intrinsic functions
at the time of writing the paper. This is a limitation of ex-
isting semantics and we believe the verification of lifted
instructions that use such unsupported features will work
out-of-the-box when semantic rules are added, assuming Z3
supports the requisite features.
Formally Verifying Transformation Passes. Our cur-

rent implementation uses a small number of LLVM passes
(17) to improve syntactic matching between the IR generated
by McSema and by Compositional Lifter. For now, we trust
the correctness of these passes to perform only semantics-
preserving transformations. Formally proving correctness
of arbitrary LLVM pass sequences is difficult. An alternative
approach is to develop simple graph rewrites on SSA graphs
that can be composed to mimic the transformations of LLVM
passes and formally prove that these graph rewrites preserve
program semantics. We leave this to future work.

Extending to Other Lifters. Our current work focuses
on McSema, an open-source lifter from x86-64 to LLVM
IR. Extending our work to support other lifters would not
only improve trust in those lifters, but also help our system
evolve to a generic framework to validate future lifters for
(nearly) free. For lifters that are designed to translate binary
instructions individually and compose the resulting LLVM
IR, we believe that this could be done simply by customizing
Compositional Lifter to capture the idiosyncrasies of each
lifter.

8 Related Work

Traditionally, translation validation [65] uses compiler in-
strumentation to help generate a simulation relation to prove
correctness of compiler optimizations [44, 66] or check the
validity of compilation [72]. In our initial attempt to solve
the problem of translation validation of the lifting of x86-
64 program, we tried to borrow insights from such efforts.
However, to be effective, we believe our validator should not
instrument the lifter mainly because lifters in their early de-
velopment phase are updated and improved at a frantic pace.
Without instrumentation, such simulation relations can be
inferred, using symbolic execution, by collecting constraints
from the input and output programs (as demonstrated in
Necula’s work [63]). First, in the context of translation valida-
tion of binary lifting, such inference is not straight-forward
mainly because the two programs (x86-64 binary and lifted
IR) are structurally very different with potentially different
number of basic blocks14. (For example, Necula’s approach
cannot handle such cases because it requires branch equiv-
alence.) Second, checking program equivalence, in general,
is an undecidable problem, and using symbolic execution is
very expensive. Hence, any solution which can avoid such
overhead is of great importance in serving a practical vali-
dation approach. Consequently, we decided to move away
from simulation-based validation approaches.
All previous efforts on establishing the faithfulness of

binary lifters can be broadly categorized to be based on (1)
Testing, or (2) Formal Methods.

8.1 Testing Based Approaches

Martignoni et al. [57, 58] propose hardware-cosimulation
based testing on QEMU [19] and Bochs [52]. Specifically,
they compared the state between actual CPU and IA-32 CPU
emulator (under test) after executing randomly selected test-
inputs on randomly chosen instructions to discover any se-
mantic deviations. Although, a scalable and straightforward
approach, it’s effectiveness is limited because many seman-
tics bugs in binary lifters are triggered upon a specific input
and exercising all such corner inputs, using randomly gener-
ated test-cases, is impractical.

14Instructions likeadcq generate additional basic blocks upon lifting, which
are not explicit in the binary program.

667

PLDI ’20, June 15ś20, 2020, London, UK S. Dasgupta, S. Dinesh, D. Venkatesh, V.S. Adve, and C.W. Fletcher

Chen et al. [26] proposed validating the static binary trans-
lator LLBT [74] and the hybrid binary translator [73], both
of which translate ARM programs to x86 programs via an
intermediate translation to LLVM IR. They validate this trans-
lation by running both programs on an input and comparing
the architectural states after each instruction. The validator
is evaluated using the ARM code compiled from EEMBC 1.1
benchmark. Like the previous approach, the validation of
single instruction’s translation is based on testing and hence
shares the same limitation of not being exhaustive.

Martignoni et al. [56] validate a łbuggier and less completež
Lo-Fi emulator [19] by generating high-fidelity test-inputs
creating using symbolic execution of a łfaithful and more
completež (in terms of IA-32 ISA) Hi-Fi emulator[52] imple-
mentation of an instruction semantics. They execute each
test instruction twice, once on a real hardware and next on
the Lo-Fi emulator, and comparing the output states. How-
ever, the work [56] does not aim to validate the translation
of full programs, which is one of our primary contributions.
Note that an approach as above cannot scale naturally to bi-
nary function validation because a set of high-coverage test-
inputs for all the constituent instructions of a function can-
not trivially derive high-coverage test-inputs for the whole
function.

8.2 Formal Methods Based Approaches

The closest work to ours in finding instruction-level bugs
is MeanDiff [46], which proposed an N-version IR testing
to validate three binary lifters, BAP [23], BINSEC [18], and
PyVEX [2] by comparing their translation of a single binary
instruction to BIL, DBA, and VEX IRs respectively. The IRs
are first converted to some unified IR representations, one
at a time. The resulting IRs are then symbolically executed
to generate symbolic summaries for comparison using an
SMT solver. First, we formally validate the translation of
an instruction, using a thoroughly-tested semantics [32], as
opposed to comparing the translation to other potentially
incorrect translations. Second, the IRs they support are sim-
pler than LLVM and so it is unclear whether the approach
would be effective if LLVM had to be translated to the unified
representation. Third, we perform program-level validation,
which is not addressed by MeanDiff.

Interestingly, the MeanDiff paper [46] says that one moti-
vation for relying on differential testing was that no formal
specification of x86-64 ISA was available at the time. We do
not have that limitation because we have developed a formal
and thoroughly tested x86-64 ISA specification [32, 60], and
made it publicly available.

The work closest to ours, in terms of the goals, is the trans-
lation verifier, Reopt-vcg [42], which addresses verification
challenges specific to the translator Reopt [3]. The verifier,
which validates translations at basic-block level, is assisted
by various manually written annotations, which are prone
to errors. In future, they aim to generate such annotations

automatically by instrumenting the lifter. Our approach does
not need any such annotations, avoiding the overhead of
maintaining instrumentation patches whenever the lifter is
modified. Moreover, the validator uses the semantics of a
small subset of x86-64, which limits its applicability to small
programs. We incorporate a fairly complete x86-64 seman-
tics [32], allowing translation validation for larger and more
diverse programs.

Myreen et al. [61, 62] presented łdecompilation into logicž
Ð a framework for verified decompilation, where machine
code is decompiled into tail-recursive functions defined in
the language of the HOL4 theorem prover [76]. The decom-
piler proves a theorem stating that the function accurately de-
scribes the effect of the given machine code. Sewell at al. [72]
proved correctness of compilation of the seL4 microkernel
from C source down to ARM machine code by building on a
formal model of ARM code generated by extending the above
work ofMyreen. Such a verified (de)compiler includes critical
design decisions which need to be incorporated early in the
design phasewith the goal of verification inmind, and cannot
easily be applied retroactively in existing (de)compilers.

9 Conclusion

In conclusion, we demonstrated that validation of lifters with-
out instrumentation or heavyweight equivalence checking
is feasible. The design is based on a simple insight: Formal
translation validation of single machine instructions can be
used as a building block for scalable full-program valida-
tion, achieving scalability by using symbolic execution and
theorem provers only for the single-instruction case. Our
experimental evaluation shows that single instruction vali-
dation is valuable in finding real bugs in McSema, a popular
open-source lifter from x86-64 to LLVM IR. We construct
an alternate lifter by composing validated single-instruction
translation sequences, with a small amount of custom logic
to handle control flow sequences and global data. To check
the McSema translation, we compare the outputs of the two
lifters, using semantics-preserving program transformations
together with graph isomorphism of data dependence graphs.
We believe our approach can be easily modified to support
other lifters from x86-64 to LLVM that are designed to trans-
late individual instructions, simply by modifying how the
alternate compositional lifter is constructed.

Acknowledgments

We thank the K team, especially Daejun Park, for his exten-
sive technical advice. We are grateful to Alastair Reid and
other reviewers for their diligence in providing invaluable
feedback. We thank our shepherd, James Bornholt, for his
helpful guidance in responding to the reviewers’ comments.
This work was supported by the Office of Naval Research
under contract number N00014-17-1-2996.

668

Scalable Validation of Binary Lifters PLDI ’20, June 15ś20, 2020, London, UK

References
[1] 1996. ARM Architecture Reference Manual. http://infocenter.

arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.

reference/index.html. Last accessed: April 20, 2020.
[2] 2013. Python bindings for Valgrind’s VEX IR. https://github.com/angr/

pyvex. Last accessed: April 20, 2020.
[3] 2014. reopt: A tool for analyzing x86-64 binaries. https://github.com/

GaloisInc/reopt. Last accessed: April 20, 2020.
[4] 2017. Z3’s behavior seems to depend on the order inwhich formulas are

asserted. https://github.com/Z3Prover/z3/issues/1106. Last accessed:
April 20, 2020.

[5] 2018. Angr: A powerful and user-friendly binary analysis platform!
http://angr.io/. Last accessed: April 20, 2020.

[6] 2018. Comparison with other machine code to LLVM bitcode
lifters. https://github.com/lifting-bits/mcsema#comparison-with-

other-machine-code-to-llvm-bitcode-lifters. (2018). Last accessed:
April 20, 2020.

[7] 2018. fcd: An optimizing decompiler. https://zneak.github.io/fcd/. Last
accessed: April 20, 2020.

[8] 2018. Remill: Library for lifting of x86, amd64, and aarch64 machine
code to LLVM bitcode. https://github.com/trailofbits/remill. Last
accessed: April 20, 2020.

[9] 2019. A few discrepancies in x86-64 Instruction Semantics. https:

//github.com/lifting-bits/remill/issues/376. Last accessed: April 20,
2020.

[10] 2019. Intel 64 and IA-32 Architectures Software Developer Manuals.
https://software.intel.com/en-us/articles/intel-sdm. Published on
October 12, 2016, updated on September 26, 2019.

[11] 2020. MemorySSA. https://llvm.org/docs/MemorySSA.html. Last
accessed: April 20, 2020.

[12] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006.
Compilers: Principles, Techniques, and Tools (2nd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[13] Sergi Alvarez. 2018. Radare2. https://rada.re/r/. Last accessed: April
20, 2020.

[14] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia Slowinska,
and Herbert Bos. 2016. An In-Depth Analysis of Disassembly
on Full-Scale x86/x64 Binaries. In 25th USENIX Security Sympo-

sium (USENIX Security 16). USENIX Association, Austin, TX, 583ś
600. https://www.usenix.org/conference/usenixsecurity16/technical-

sessions/presentation/andriesse

[15] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
2014. OpenTuner: An Extensible Framework for Program Autotuning.
In International Conference on Parallel Architectures and Compilation

Techniques. Edmonton, Canada. http://groups.csail.mit.edu/commit/

papers/2014/ansel-pact14-opentuner.pdf

[16] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brum-
ley. 2014. Enhancing Symbolic Execution with Veritesting. In Pro-

ceedings of the 36th International Conference on Software Engineering

(Hyderabad, India) (ICSE 2014). ACM, New York, NY, USA, 1083ś1094.
https://doi.org/10.1145/2568225.2568293

[17] Gogul Balakrishnan and Thomas Reps. 2010. WYSINWYX: What You
See is Not What You eXecute. ACM Trans. Program. Lang. Syst. 32,
6, Article 23 (Aug. 2010), 84 pages. https://doi.org/10.1145/1749608.

1749612

[18] Sébastien Bardin, Philippe Herrmann, Jérôme Leroux, Olivier Ly, Re-
naud Tabary, and Aymeric Vincent. 2011. The BINCOA Framework for
Binary Code Analysis. In Proceedings of the 23rd International Confer-

ence on Computer Aided Verification (Snowbird, UT) (CAV’11). Springer-
Verlag, Berlin, Heidelberg, 165ś170. http://dl.acm.org/citation.cfm?

id=2032305.2032318

[19] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator.
In Proceedings of the Annual Conference on USENIX Annual Technical

Conference (Anaheim, CA) (ATEC ’05). USENIX Association, Berkeley,
CA, USA, 41ś41. http://dl.acm.org/citation.cfm?id=1247360.1247401

[20] Ahmed Bougacha. 2017. Binary Translator to LLVM IR. https://github.
com/repzret/dagger. Last accessed: April 20, 2020.

[21] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An
Infrastructure for Adaptive Dynamic Optimization. In Proceedings of

the International Symposium on Code Generation and Optimization:

Feedback-directed and Runtime Optimization (San Francisco, California,
USA) (CGO ’03). IEEE Computer Society, Washington, DC, USA, 265ś
275.

[22] Derek L. Bruening. 2004. Efficient, Transparent, and Comprehensive

Runtime Code Manipulation. Ph.D. Dissertation. Cambridge, MA, USA.
AAI0807735.

[23] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J.
Schwartz. 2011. BAP: A Binary Analysis Platform. In Proceedings

of the 23rd International Conference on Computer Aided Verification

(Snowbird, UT) (CAV’11). Springer-Verlag, Berlin, Heidelberg, 463ś469.
http://dl.acm.org/citation.cfm?id=2032305.2032342

[24] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David
Brumley. 2012. Unleashing Mayhem on Binary Code. In Proceed-

ings of the 2012 IEEE Symposium on Security and Privacy (SP ’12).
IEEE Computer Society, Washington, DC, USA, 380ś394. https:

//doi.org/10.1109/SP.2012.31

[25] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-
Adaptive Mutational Fuzzing. In Proceedings of the 2015 IEEE Sympo-

sium on Security and Privacy (SP ’15). IEEE Computer Society, Wash-
ington, DC, USA, 725ś741. https://doi.org/10.1109/SP.2015.50

[26] Jiunn-Yeu Chen, Wuu Yang, Bor-Yeh Shen, Yuan-Jia Li, andWei-Chung
Hsu. 2015. Automatic Validation for Binary Translation. Comput. Lang.

Syst. Struct. 43, C (Oct. 2015), 96ś115. https://doi.org/10.1016/j.cl.2015.

05.002

[27] V. Chipounov and G. Candea. 2011. Enabling sophisticated analy-
ses of x86 binaries with RevGen. In 2011 IEEE/IFIP 41st International

Conference on Dependable Systems and Networks Workshops (DSN-W).
211ś216. https://doi.org/10.1109/DSNW.2011.5958815

[28] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011.
S2E: A Platform for In-vivo Multi-path Analysis of Software Systems.
In Proceedings of the Sixteenth International Conference on Architectural

Support for Programming Languages and Operating Systems (Newport
Beach, California, USA) (ASPLOS XVI). ACM, New York, NY, USA,
265ś278. https://doi.org/10.1145/1950365.1950396

[29] Cristina Cifuentes and Mike Van Emmerik. 2000. UQBT: Adaptable
Binary Translation at Low Cost. Computer 33, 3 (March 2000), 60ś66.
https://doi.org/10.1109/2.825697

[30] Weidong Cui, Marcus Peinado, Karl Chen, Helen J. Wang, and Luis
Irun-Briz. 2008. Tupni: Automatic Reverse Engineering of Input For-
mats. In Proceedings of the 15th ACM Conference on Computer and

Communications Security (Alexandria, Virginia, USA) (CCS ’08). ACM,
New York, NY, USA, 391ś402. https://doi.org/10.1145/1455770.1455820

[31] Sandeep Dasgupta. 2020. A Scalable Validator for Binary Lifters.
https://github.com/sdasgup3/validating-binary-decompilation. Last
accessed: April 20, 2020.

[32] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S.
Adve, and Grigore Roşu. 2019. A Complete Formal Semantics of
X86-64 User-Level Instruction Set Architecture. In Proceedings of the

40th ACM SIGPLAN Conference on Programming Language Design

and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for
Computing Machinery, New York, NY, USA, 1133ś1148. https://doi.

org/10.1145/3314221.3314601

[33] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software, 14th In-

ternational Conference on Tools and Algorithms for the Construction

and Analysis of Systems (Budapest, Hungary) (TACAS’08/ETAPS’08).
Springer-Verlag, Berlin, Heidelberg, 337ś340. http://dl.acm.org/

citation.cfm?id=1792734.1792766

669

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
https://github.com/angr/pyvex
https://github.com/angr/pyvex
https://github.com/GaloisInc/reopt
https://github.com/GaloisInc/reopt
https://github.com/Z3Prover/z3/issues/1106
http://angr.io/
https://github.com/lifting-bits/mcsema#comparison-with-other-machine-code-to-llvm-bitcode-lifters
https://github.com/lifting-bits/mcsema#comparison-with-other-machine-code-to-llvm-bitcode-lifters
https://zneak.github.io/fcd/
https://github.com/trailofbits/remill
https://github.com/lifting-bits/remill/issues/376
https://github.com/lifting-bits/remill/issues/376
https://software.intel.com/en-us/articles/intel-sdm
https://llvm.org/docs/MemorySSA.html
https://rada.re/r/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/andriesse
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/andriesse
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/1749608.1749612
https://doi.org/10.1145/1749608.1749612
http://dl.acm.org/citation.cfm?id=2032305.2032318
http://dl.acm.org/citation.cfm?id=2032305.2032318
http://dl.acm.org/citation.cfm?id=1247360.1247401
https://github.com/repzret/dagger
https://github.com/repzret/dagger
http://dl.acm.org/citation.cfm?id=2032305.2032342
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1016/j.cl.2015.05.002
https://doi.org/10.1016/j.cl.2015.05.002
https://doi.org/10.1109/DSNW.2011.5958815
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1109/2.825697
https://doi.org/10.1145/1455770.1455820
https://github.com/sdasgup3/validating-binary-decompilation
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/3314221.3314601
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766

PLDI ’20, June 15ś20, 2020, London, UK S. Dasgupta, S. Dinesh, D. Venkatesh, V.S. Adve, and C.W. Fletcher

[34] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. 2017.
Rev.Ng: A Unified Binary Analysis Framework to Recover CFGs and
Function Boundaries. In Proceedings of the 26th International Conference
on Compiler Construction (Austin, TX, USA) (CC 2017). ACM, New York,
NY, USA, 131ś141. https://doi.org/10.1145/3033019.3033028

[35] Draper-Laboratory. [n.d.]. An architecture-independent decompiler to
LLVM IR. https://github.com/draperlaboratory/fracture. Last accessed:
April 20, 2020.

[36] Lukáš Ďurfina, Jakub Křoustek, Petr Zemek, Dušan Kolář, Tomáš
Hruška, Karel Masařík, and Alexander Meduna. 2011. Design of a
Retargetable Decompiler for a Static Platform-Independent Malware
Analysis. In Information Security and Assurance, Tai-hoon Kim, Hoj-
jat Adeli, Rosslin John Robles, and Maricel Balitanas (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 72ś86.

[37] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and
George C. Necula. 2006. XFI: Software Guards for System Address
Spaces. In Proceedings of the 7th Symposium on Operating Systems

Design and Implementation (Seattle, Washington) (OSDI ’06). USENIX
Association, Berkeley, CA, USA, 75ś88. http://dl.acm.org/citation.

cfm?id=1298455.1298463

[38] Bryan Ford and Russ Cox. 2008. Vx32: Lightweight User-level Sandbox-
ing on the x86. In USENIX 2008 Annual Technical Conference (Boston,
Massachusetts) (ATC’08). USENIX Association, Berkeley, CA, USA,
293ś306. http://dl.acm.org/citation.cfm?id=1404014.1404039

[39] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. Auto-
mated Whitebox Fuzz Testing. In Proceedings of NDSS (Network and

Distributed Systems Security). 151ś166.
[40] Ilfak Guilfanov. 2008. Decompilers and Beyond. In Black-Hat USA.
[41] Laune C. Harris and Barton P. Miller. 2005. Practical Analysis of

Stripped Binary Code. SIGARCH Comput. Archit. News 33, 5 (Dec.
2005), 63ś68. https://doi.org/10.1145/1127577.1127590

[42] Joe Hendrix, Guannan Wei, and Simon Winwood. 2019. Towards
Verified Binary Raising. In Workshop on Instruction Set Architecture

Specification (co-located with ITP 2019).
[43] S. Horwitz, J. Prins, and T. Reps. 1988. On the Adequacy of Program

Dependence Graphs for Representing Programs. In Proceedings of the

15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (San Diego, California, USA) (POPL ’88). Association for
Computing Machinery, New York, NY, USA, 146ś157. https://doi.org/

10.1145/73560.73573

[44] Aditya Kanade, Amitabha Sanyal, and Uday Khedker. 2006. A PVS
Based Framework for Validating Compiler Optimizations. In Proceed-

ings of the Fourth IEEE International Conference on Software Engineering

and Formal Methods (SEFM ’06). IEEE Computer Society, Washington,
DC, USA, 108ś117. https://doi.org/10.1109/SEFM.2006.4

[45] Theodoros Kasampalis. 2020. Translation Validation for Compilation
Verification. PhD thesis, University of Illinois at Urbana Champaign
(to be published).

[46] Soomin Kim,Markus Faerevaag,Minkyu Jung, SeungIl Jung, DongYeop
Oh, JongHyup Lee, and Sang Kil Cha. 2017. Testing Intermediate Rep-
resentations for Binary Analysis. In Proceedings of the 32Nd IEEE/ACM

International Conference on Automated Software Engineering (Urbana-
Champaign, IL, USA) (ASE 2017). IEEE Press, Piscataway, NJ, USA,
353ś364. http://dl.acm.org/citation.cfm?id=3155562.3155609

[47] Kevin Kirchner and Stefan Rosenthaler. 2017. Bin2llvm: Analysis
of Binary Programs Using LLVM Intermediate Representation. In
Proceedings of the 12th International Conference on Availability, Re-

liability and Security (Reggio Calabria, Italy) (ARES ’17). Association
for Computing Machinery, New York, NY, USA, Article 45, 7 pages.
https://doi.org/10.1145/3098954.3103152

[48] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. 2002.
Secure Execution via Program Shepherding. In Proceedings of the 11th

USENIX Security Symposium. USENIX Association, Berkeley, CA, USA,
191ś206. http://dl.acm.org/citation.cfm?id=647253.720293

[49] J. Křoustek and P. Matula. 2018. RetDec: An Open-Source Machine-
Code Decompiler. [talk]. Presented at Pass the SALT 2018, Lille,
FR.

[50] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings

of the 2004 International Symposium on Code Generation and Optimiza-

tion (CGO’04). Palo Alto, California.
[51] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely. 2010.

PEBIL: Efficient static binary instrumentation for Linux. In 2010 IEEE

International Symposium on Performance Analysis of Systems Software

(ISPASS). 175ś183. https://doi.org/10.1109/ISPASS.2010.5452024

[52] Kevin P. Lawton. 1996. Bochs: A Portable PC Emulator for Unix/X.
Linux J. 1996, 29es, Article 7 (Sept. 1996). http://dl.acm.org/citation.

cfm?id=326350.326357

[53] Zhiqiang Lin and Xiangyu Zhang. 2008. Deriving Input Syntactic
Structure from Execution. In Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of Software Engineering (At-
lanta, Georgia) (SIGSOFT ’08/FSE-16). ACM, New York, NY, USA, 83ś93.
https://doi.org/10.1145/1453101.1453114

[54] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. 2005. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation

(Chicago, IL, USA) (PLDI ’05). ACM, New York, NY, USA, 190ś200.
https://doi.org/10.1145/1065010.1065034

[55] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel
Forsgren, Gustav Hållberg, Johan Högberg, Fredrik Larsson, Andreas
Moestedt, and Bengt Werner. 2002. Simics: A Full System Simulation
Platform. Computer 35, 2 (Feb. 2002), 50ś58. https://doi.org/10.1109/

2.982916

[56] Lorenzo Martignoni, Stephen McCamant, Pongsin Poosankam, Dawn
Song, and Petros Maniatis. 2012. Path-exploration Lifting: Hi-fi Tests
for Lo-fi Emulators. In Proceedings of the Seventeenth International

Conference on Architectural Support for Programming Languages and

Operating Systems (London, England, UK) (ASPLOS XVII). ACM, New
York, NY, USA, 337ś348. https://doi.org/10.1145/2150976.2151012

[57] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and
Danilo Bruschi. 2010. Testing System Virtual Machines. In Proceedings

of the 19th International Symposium on Software Testing and Analysis

(Trento, Italy) (ISSTA ’10). ACM, New York, NY, USA, 171ś182. https:

//doi.org/10.1145/1831708.1831730

[58] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and
Danilo Bruschi. 2009. Testing CPU Emulators. In Proceedings of the

Eighteenth International Symposium on Software Testing and Analysis

(Chicago, IL, USA) (ISSTA ’09). ACM, New York, NY, USA, 261ś272.
https://doi.org/10.1145/1572272.1572303

[59] Xiaozhu Meng and Barton P. Miller. 2016. Binary Code is Not Easy. In
Proceedings of the 25th International Symposium on Software Testing

and Analysis (Saarbrücken, Germany) (ISSTA 2016). Association for
Computing Machinery, New York, NY, USA, 24ś35. https://doi.org/

10.1145/2931037.2931047

[60] Andrew H. Miranti, Sandeep Dasgupta, and Grigore Roşu. 2019. For-
malizing x86-64 Instruction Decoder in K. In Workshop on Instruction

Set Architecture Specification (co-located with ITP 2019).
[61] Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind. 2008.

Machine-code Verification for Multiple Architectures: An Application
of Decompilation into Logic. In Proceedings of the 2008 International

Conference on Formal Methods in Computer-Aided Design (Portland,
Oregon) (FMCAD ’08). IEEE Press, Piscataway, NJ, USA, Article 20,
8 pages. http://dl.acm.org/citation.cfm?id=1517424.1517444

[62] M. O. Myreen, M. J. C. Gordon, and K. Slind. 2012. Decompilation into
logic Ð Improved. In 2012 Formal Methods in Computer-Aided Design

(FMCAD). 78ś81.

670

https://doi.org/10.1145/3033019.3033028
https://github.com/draperlaboratory/fracture
http://dl.acm.org/citation.cfm?id=1298455.1298463
http://dl.acm.org/citation.cfm?id=1298455.1298463
http://dl.acm.org/citation.cfm?id=1404014.1404039
https://doi.org/10.1145/1127577.1127590
https://doi.org/10.1145/73560.73573
https://doi.org/10.1145/73560.73573
https://doi.org/10.1109/SEFM.2006.4
http://dl.acm.org/citation.cfm?id=3155562.3155609
https://doi.org/10.1145/3098954.3103152
http://dl.acm.org/citation.cfm?id=647253.720293
https://doi.org/10.1109/ISPASS.2010.5452024
http://dl.acm.org/citation.cfm?id=326350.326357
http://dl.acm.org/citation.cfm?id=326350.326357
https://doi.org/10.1145/1453101.1453114
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/2.982916
https://doi.org/10.1109/2.982916
https://doi.org/10.1145/2150976.2151012
https://doi.org/10.1145/1831708.1831730
https://doi.org/10.1145/1831708.1831730
https://doi.org/10.1145/1572272.1572303
https://doi.org/10.1145/2931037.2931047
https://doi.org/10.1145/2931037.2931047
http://dl.acm.org/citation.cfm?id=1517424.1517444

Scalable Validation of Binary Lifters PLDI ’20, June 15ś20, 2020, London, UK

[63] George C. Necula. 2000. Translation Validation for an Optimizing
Compiler. In Proceedings of the ACM SIGPLAN 2000 Conference on

Programming Language Design and Implementation (Vancouver, British
Columbia, Canada) (PLDI ’00). ACM, New York, NY, USA, 83ś94. https:

//doi.org/10.1145/349299.349314

[64] Nicholas Nethercote and Julian Seward. 2003. Valgrind: A Program
Supervision Framework. Electronic Notes in Theoretical Computer

Science 89, 2 (2003), 44 ś 66. https://doi.org/10.1016/S1571-0661(04)

81042-9 RV ’2003, Run-time Verification (Satellite Workshop of CAV
’03).

[65] Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Transla-
tion Validation. In Proceedings of the 4th International Conference

on Tools and Algorithms for Construction and Analysis of Systems

(TACAS ’98). Springer-Verlag, Berlin, Heidelberg, 151ś166. http:

//dl.acm.org/citation.cfm?id=646482.691453

[66] Xavier Rival. 2004. Symbolic Transfer Function-based Approaches
to Certified Compilation. In Proceedings of the 31st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (Venice,
Italy) (POPL ’04). ACM, New York, NY, USA, 1ś13. https://doi.org/10.

1145/964001.964002

[67] Andrew Ruef and Artem Dinaburg. 2014. Static Translation of X86
Instruction Semantics to LLVM with McSema. https://github.com/

trailofbits/mcsema

[68] M. Saltz, A. Jain, A. Kothari, A. Fard, J. A. Miller, and L. Ramaswamy.
2014. DualIso: An Algorithm for Subgraph Pattern Matching on Very
Large Labeled Graphs. In 2014 IEEE International Congress on Big Data.
498ś505. https://doi.org/10.1109/BigData.Congress.2014.79

[69] Davide Sangiorgi. 2011. Introduction to Bisimulation and Coinduction.
Cambridge University Press, New York, NY, USA.

[70] Edward J. Schwartz, JongHyup Lee, Maverick Woo, and David Brum-
ley. 2013. Native x86 Decompilation Using Semantics-preserving
Structural Analysis and Iterative Control-flow Structuring. In Pro-

ceedings of the 22Nd USENIX Conference on Security (Washington,
D.C.) (SEC’13). USENIX Association, Berkeley, CA, USA, 353ś368.
http://dl.acm.org/citation.cfm?id=2534766.2534797

[71] Traian Florin Şerbănuţa, Andrei Arusoaie, David Lazar, Chucky Ellison,
Dorel Lucanu, and Grigore Roşu. [n.d.]. The K Primer (version 3.2).
Technical Report.

[72] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein.
2013. Translation Validation for a Verified OS Kernel. In Proceedings of

the 34th ACM SIGPLAN Conference on Programming Language Design

and Implementation (Seattle, Washington, USA) (PLDI ’13). ACM, New
York, NY, USA, 471ś482. https://doi.org/10.1145/2491956.2462183

[73] B. Shen, J. You, W. Yang, and W. Hsu. 2012. An LLVM-based hybrid
binary translation system. In 7th IEEE International Symposium on

Industrial Embedded Systems (SIES’12). 229ś236. https://doi.org/10.

1109/SIES.2012.6356589

[74] Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and Wuu Yang. 2012.
LLBT: An LLVM-based Static Binary Translator. In Proceedings of the

2012 International Conference on Compilers, Architectures and Synthesis

for Embedded Systems (Tampere, Finland) (CASES ’12). ACM, New York,
NY, USA, 51ś60. https://doi.org/10.1145/2380403.2380419

[75] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SoK: (State
of) The Art of War: Offensive Techniques in Binary Analysis. (2016).

[76] Konrad Slind and Michael Norrish. 2008. A Brief Overview of HOL4. In
Theorem Proving in Higher Order Logics, Otmane Ait Mohamed, César
Muñoz, and Sofiène Tahar (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 28ś32.

[77] Aaron Smith and S. Bharadwaj Yadavalli. 2018. LLVM Based Binary
Raiser: llvm-mctoll. (2018). https://github.com/Microsoft/llvm-mctoll

[78] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, and Prateek Saxena. 2008. BitBlaze: A New Approach
to Computer Security via Binary Analysis. In Proceedings of the

4th International Conference on Information Systems Security (Hy-
derabad, India) (ICISS ’08). Springer-Verlag, Berlin, Heidelberg, 1ś25.
https://doi.org/10.1007/978-3-540-89862-7_1

[79] Amitabh Srivastava and Alan Eustace. 1994. ATOM: A System for
Building Customized Program Analysis Tools. In Proceedings of the

ACM SIGPLAN 1994 Conference on Programming Language Design and

Implementation (Orlando, Florida, USA) (PLDI ’94). ACM, New York,
NY, USA, 196ś205. https://doi.org/10.1145/178243.178260

[80] Michael Stepp, Ross Tate, and Sorin Lerner. 2011. Equality-based
Translation Validator for LLVM. In Proceedings of the 23rd Inter-

national Conference on Computer Aided Verification (Snowbird, UT)
(CAV’11). Springer-Verlag, Berlin, Heidelberg, 737ś742. http://dl.acm.

org/citation.cfm?id=2032305.2032364

[81] Ken Thompson. 1984. Reflections on Trusting Trust. Commun. ACM

27, 8 (Aug. 1984), 761ś763. https://doi.org/10.1145/358198.358210

[82] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Evalu-
ating Value-graph Translation Validation for LLVM. In Proceedings of

the 32Nd ACM SIGPLAN Conference on Programming Language Design

and Implementation (San Jose, California, USA) (PLDI ’11). ACM, New
York, NY, USA, 295ś305. https://doi.org/10.1145/1993498.1993533

[83] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and
Matthew Smith. 2015. No More Gotos: Decompilation Using Pattern-
Independent Control-Flow Structuring and Semantic-Preserving
Transformations. In NDSS.

[84] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, RobertMuth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar.
2009. Native Client: A Sandbox for Portable, Untrusted x86 Native
Code. In Proceedings of the 2009 30th IEEE Symposium on Security and

Privacy (SP ’09). IEEE Computer Society, Washington, DC, USA, 79ś93.
https://doi.org/10.1109/SP.2009.25

[85] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres,
Stephen McCamant, Dawn Song, and Wei Zou. 2013. Practical Con-
trol Flow Integrity and Randomization for Binary Executables. In
Proceedings of the 2013 IEEE Symposium on Security and Privacy

(SP ’13). IEEE Computer Society, Washington, DC, USA, 559ś573.
https://doi.org/10.1109/SP.2013.44

[86] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS
Binaries. In Proceedings of the 22nd USENIX Conference on Security

(Washington, D.C.) (SEC’13). USENIX Association, USA, 337ś352.

671

https://doi.org/10.1145/349299.349314
https://doi.org/10.1145/349299.349314
https://doi.org/10.1016/S1571-0661(04)81042-9
https://doi.org/10.1016/S1571-0661(04)81042-9
http://dl.acm.org/citation.cfm?id=646482.691453
http://dl.acm.org/citation.cfm?id=646482.691453
https://doi.org/10.1145/964001.964002
https://doi.org/10.1145/964001.964002
https://github.com/trailofbits/mcsema
https://github.com/trailofbits/mcsema
https://doi.org/10.1109/BigData.Congress.2014.79
http://dl.acm.org/citation.cfm?id=2534766.2534797
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1109/SIES.2012.6356589
https://doi.org/10.1109/SIES.2012.6356589
https://doi.org/10.1145/2380403.2380419
https://github.com/Microsoft/llvm-mctoll
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1145/178243.178260
http://dl.acm.org/citation.cfm?id=2032305.2032364
http://dl.acm.org/citation.cfm?id=2032305.2032364
https://doi.org/10.1145/358198.358210
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1109/SP.2009.25
https://doi.org/10.1109/SP.2013.44

	Abstract
	1 Introduction
	2 Approach Overview
	3 Preliminaries
	4 Single-Instruction Translation Validation
	5 Program-Level Validation
	5.1 Compositional Lifter
	5.2 Transformer & Matcher

	6 Evaluation
	7 Discussion
	8 Related Work
	8.1 Testing Based Approaches
	8.2 Formal Methods Based Approaches

	9 Conclusion
	Acknowledgments
	References

