
Scalable Validation of Binary
Lifters

Sandeep Dasgupta ● Sushant Dinesh ● Deepan Venkatesh ● Vikram S. Adve ● Christopher W. Fletcher

University of Illinois at Urbana Champaign

19 June 2020 @ PLDI’20

1

Binary Analysis is Important

The ability to directly reason about binary is important

A few scenarios where binary analysis is useful

❑Missing source code (e.g. legacy or malware)

❑ Avoids trusting compilers

2

A General Approach for Binary
Analysis

DisassemblerBinary
Code

High-
Level IR

3

Assembly
Code

Lifter
Post-Lifter

Actions

Recover high-level primitives
• Instructions
• Control-flow graphs
• Functions boundaries

Enable re-targetability
to multiple ISAs.

• Recovery of types,
variables, and
function prototypes

• Re-target or re-opt
for different ISAs

❑ Vast number of instructions

❑ Standard manuals are often ambiguous, buggy, include
divergence in the behaviours of variants

Semantics of Memory Variant
(movsd (%rax), %xmm0)

S1. XMM0[63:0] MEM_ADDR[63:0]
S2. XMM0[127:64]  0

Lifting is Challenging

4

Manual encoding the effects of binary instructions is hard

Semantics of Register Variant
(movsd %xmm1, %xmm0)

S1. XMM0[63:0]  XMM1[63:0]
S2. XMM0[127:64]  (Unmodified)

Lifting is Pivotal in Binary Analysis

5

Validation of Lifting is Critical

6

Faithful binary translation strengthens trust in binary analysis results

Goal

To develop formal and informal techniques to achieve high
confidence in the correctness of binary lifting, from a complex

machine ISA to a rich IR, by leveraging the semantics of languages
involved

7

Summary of Prior Work

8

Require random
testing

• Martignoni et al.
ISSTA’10

• Chen et al. CLSS’15

Restricted to
instruction- or basic-
block-level validation

▪Martignoni et al.
ISSTA’10, ASPLOS’12

▪ Chen et al. CLSS’15

▪Meandiff - Kim et al.
ASE’17

Require
instrumentation of

lifter

▪ Reopt-vcg, John et
al. SpISA’19

Scope of the work

9

To validate translation from x86-64 programs to LLVM IR using McSema

Our Approach: Intuition

10

Most binary lifters are designed to perform simple instruction-by-
instruction lifting followed by standard IR optimizations to achieve simpler

IR code

Formal translation validation of single machine instructions can be used as
a building block for scalable full-program validation

Observation

Intuition

Our Two-Phase Approach

11

Phase I Single-Instruction Translation-Validation (SITV)

❖ Translation-validation of lifted instructions in isolation

❖ Leverages our prior work on formalizing x86-64 semanticsPLDI’19

Phase II Program-level Validation (PLV)

❖ A scalable approach for full-program validation build on SITV

❖ Cheaper than symbolic-execution based equivalence checking

Contributions

12

Developing scalable techniques for validating lifters

❑ First SITV framework for an extensive x86-64 ISA

❑ Revealed Bugs in a mature lifter like McSema

❑ Novel full-program validation avoiding heavyweight
symbolic execution

Lifter Validation: Our Approach

13

❖ Phase I Single-Instruction Translation-Validation (SITV)

❖ Phase II Program-level Validation (PLV)

Overall Goal

14

Our goal is to validate the translation from P to T

main:

Binary Program (P) Lifted IR Program (T)

bin_inst1

bin_inst2

…

bin_instn

ir_inst1

ir_inst2

…

ir_instm

define … @main(…) {

}

Lifter (D)

Single-Instruction Translation Validation

15

main:

bin_inst1

bin_inst2
…

bin_instn

Lifted
IR

Seq.

Lifted
IR

Seq.

SITV* SITV* SITV*

*SITV: Single Instruction Translation Validation Framework

Translation Valid!

,

Lifted
IR

Seq.

Translation Valid!

,

Validation Failed!
(Report Bug)

Validated-Instruction Store Cache

D DDbin_inst1 bin_inst2

Lifted
IR

Seq.

Lifted
IR

Seq.

Binary Program (P)

Lifted IR Seq., SBinary Instr, I

SITV

16

Symbolic-execution
(using x86-64 semantics *)

Symbolic-execution
(using LLVM semantics)

Symbolic-summary, sumI Symbolic-summary, sumS

Verification-condition (VC) generator

VC: z3.solve (sumS ≠ sumI)

SMT Solver

R

Validation Failed (Report Bug)

== sat

Translation Validated!

== unsat

• Autogenerated using K Framework
• Not Performance heavy: Loops rarely

found in instructions’ specs

*A Complete Formal Semantics of x86-64 User-Level Instruction Set Architecture, PLDI 2019

Lifted IR Seq., SBinary Instr, I

SITV

17

Symbolic-execution
(using x86-64 semantics)

Symbolic-execution
(using LLVM semantics)

Symbolic-summary, sumI Symbolic-summary, sumS

Verification-condition (VC) generator

VC: assert (sumS ≠ sumI)

SMT Solver

R

SITV: Revealed Bugs

== sat

Validation Failed (Report Bug)

Found 29
solver failures

all
acknowledged

as bugs by
McSema

developers

SITV: A Few Reported Bugs

18

Intel Manual Vol. 2: May 2019

xaddq %rax, %rbx

(1) temp ← %rax + %rbx
(2) %rax ← %rbx
(3) %rbx ← temp

McSema Implementation

xaddq %rbx, %rbx
(with same operands)

(A) old_rbx ← %rbx
(B) temp ← %rbx + %rbx
(C) %rbx ← temp
(D) %rbx ← old_rbx

SITV: A Few Reported Bugs

19

Intel Manual Vol. 2: May 2019

cmpxchgl %ecx, %ebx

TEMP ← ebx
IF eax = TEMP THEN
ZF ← 1;
ebx ← ecx;

ELSE
ZF ← 0;
eax ← TEMP;
ebx ← TEMP;

FI;

McSema Implementation

cmpxchgl %ecx, %ebx

TEMP ← rbx
IF (32’0 ◦ eax) = TEMP THEN
ZF ← 1;
ebx ← ecx;

ELSE
ZF ← 0;
eax ← TEMP;
ebx ← TEMP;

FI;

Lifter Validation: Our Approach

20

❖ Phase I Single-Instruction Translation-Validation (SITV)

❖ Phase II Program-level Validation (PLV)

PLV: Intuition

Propose an alternate reference program, T’, generated by
carefully stitching the SIV-validated IR sequences (using
compositional lifting) to be compared against T

Semantic equivalence check between T & T’ is reduced to a much
“cheaper” graph-isomorphism check (using Matcher) through the
use of semantic preserving transformations (using Transformer)

22

bin_inst1 bin_inst_2 bin_inst_n LIRSnLIRS2, LIRS1 , ,

Validated-Instruction Store Cache

Binary function (P)

bin_inst1

bin_inst2

…

bin_instn

Proposed IR Program, T’

main:
define … @main(…) {

LIRS1

glue code

LIRSnLIRS2

glue code

…
glue code

}

PLV: Compositional Lifting

23

For each function F’ of T’

PLV: Transformation & Matching

define … @main(…) {
glue code

glue code

…
glue code

}

LIRS1

LIRS2

LIRSn

For each function F of T

ir_inst1

ir_inst2

…
ir_instm

define … @main(…) {

} FN

F’N

Data-Dependence Graph, GN

Data-Dependence Graph, G’N

Matcher *
Are G & G’N

isomorphic?

F & F’
semantically

equivalent

Possible
Bug in Lifter

Transformer
(LLVM passes)

Transformer
(LLVM passes)

Vertex:
LLVM instruction
Edge:
SSA def-use or memory
dependence relation

* On the Adequacy of Program Dependence Graphs for Representing Programs, POPL’88

Isomorphism of GN & G’N →

semantic equiv. of FN & F’N,
follows from *Horwitz et al.

Transformer

❑ Prunes-off syntactic differences between T & T’ except for
▪ Names of virtual registers, and
▪ Order of non-dependent instructions

❑ Transformer uses a list of LLVM optimization passes one for each
function pair

❑ Pass list is derived using pass sequence autotuning

Optimization passes
NOT formally-verified

Autotuning Based Transformer

Used OpenTuner* framework for autotuning

▪ Search Space: Includes 17 LLVM optimization passes (manually
discovered)

▪ Objective Function: To maximize number of matching nodes of
the candidate data dependence graphs

* OpenTuner: An Extensible Framework for Program Autotuning, PACT’14

PLV: Runtimes

Evaluated PLV on 2348 LLVM single-source benchmark functions

❑ Compositional Lifting: 0.05s – 5.57s, median – 0.63s

❑ Autotuning: 10.7 s - 20 m, median - 6.7 m

❑Matcher: 0.06s − 119.6s, median – 5 s

PLV: Results

❑ Proved correctness of 2254 /2348 translations; success rate - 96%

❑ LOC of lifted IR: ranges from 86 − 32105, median - 611

❑Manual inspection shows the remaining 4% to be false alarms

Summary

❖ Validation of lifters w/o instrumentation or heavyweight
equivalence checking is feasible

❖ Formal translation validation of single machine instructions can be
used as a building block for scalable full-program validation

