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Binary Analysis is Important

The ability to directly reason about binary is important     

A few scenarios where binary analysis is useful

❑Missing source code (e.g. legacy or malware)

❑ Avoids trusting compilers
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A General Approach for Binary 
Analysis

DisassemblerBinary 
Code

High-
Level IR
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Assembly 
Code

Lifter
Post-Lifter

Actions

Recover high-level primitives
• Instructions
• Control-flow graphs
• Functions boundaries

Enable re-targetability 
to multiple ISAs.

• Recovery of types, 
variables, and 
function prototypes

• Re-target or re-opt 
for different ISAs



❑ Vast number of instructions

❑ Standard manuals are often ambiguous, buggy, include 
divergence in the behaviours of variants

Semantics of Memory Variant
(movsd (%rax), %xmm0)

S1. XMM0[63:0] MEM_ADDR[63:0]
S2. XMM0[127:64]  0

Lifting is Challenging
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Manual encoding the effects of binary instructions is hard

Semantics of Register Variant
(movsd %xmm1, %xmm0)

S1. XMM0[63:0]  XMM1[63:0]
S2. XMM0[127:64]  (Unmodified)



Lifting is Pivotal in Binary Analysis
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Validation of  Lifting is Critical
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Faithful binary translation strengthens trust in binary analysis results



Goal

To develop formal and informal techniques to achieve high 
confidence in the correctness of binary lifting, from a complex 

machine ISA to a rich IR, by leveraging the semantics of languages 
involved
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Summary of  Prior Work
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Require random 
testing

• Martignoni et al. 
ISSTA’10

• Chen et al. CLSS’15 

Restricted to 
instruction- or basic-
block-level validation

▪Martignoni et al. 
ISSTA’10, ASPLOS’12

▪ Chen et al. CLSS’15

▪Meandiff - Kim et al. 
ASE’17

Require 
instrumentation of 

lifter

▪ Reopt-vcg, John et 
al. SpISA’19



Scope of  the work
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To validate translation from x86-64 programs to LLVM IR using McSema



Our Approach: Intuition
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Most binary lifters are designed to perform simple instruction-by-
instruction lifting  followed by standard IR optimizations to achieve simpler 

IR code

Formal translation validation of single machine instructions can be used as 
a building block for scalable full-program validation

Observation

Intuition



Our Two-Phase Approach
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Phase I Single-Instruction Translation-Validation (SITV)

❖ Translation-validation of lifted instructions in isolation

❖ Leverages our prior work on formalizing x86-64 semanticsPLDI’19

Phase II Program-level Validation (PLV)

❖ A scalable approach for full-program validation build on SITV

❖ Cheaper than symbolic-execution based equivalence checking



Contributions
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Developing scalable techniques for validating lifters

❑ First SITV framework for an extensive x86-64 ISA

❑ Revealed Bugs in a mature lifter like McSema

❑ Novel full-program validation avoiding heavyweight 
symbolic execution



Lifter Validation: Our Approach
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❖ Phase I Single-Instruction Translation-Validation (SITV)

❖ Phase II Program-level Validation (PLV)



Overall Goal
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Our goal is to validate the translation from P to T

main:

Binary Program (P) Lifted IR Program (T)

bin_inst1

bin_inst2

…

bin_instn

ir_inst1

ir_inst2

…

ir_instm

define  … @main(…) {

}

Lifter (D)



Single-Instruction Translation Validation
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main:

bin_inst1

bin_inst2
…

bin_instn

Lifted
IR

Seq.

Lifted
IR 

Seq.

SITV* SITV* SITV*

*SITV: Single Instruction Translation Validation Framework

Translation Valid!

,

Lifted
IR

Seq.

Translation Valid!

,

Validation Failed!
(Report Bug)

Validated-Instruction Store Cache

D DDbin_inst1 bin_inst2

Lifted
IR

Seq.

Lifted
IR 

Seq.

Binary Program (P)



Lifted IR Seq., SBinary Instr, I

SITV
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Symbolic-execution
(using x86-64 semantics *)

Symbolic-execution
(using LLVM semantics)

Symbolic-summary, sumI Symbolic-summary, sumS

Verification-condition (VC) generator

VC: z3.solve ( sumS ≠ sumI)

SMT Solver

R

Validation Failed (Report Bug)

== sat

Translation Validated!

== unsat

• Autogenerated using K Framework
• Not Performance heavy: Loops rarely 

found in instructions’ specs

*A Complete Formal Semantics of x86-64 User-Level Instruction Set Architecture, PLDI 2019



Lifted IR Seq., SBinary Instr, I

SITV
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Symbolic-execution
(using x86-64 semantics)

Symbolic-execution
(using LLVM semantics)

Symbolic-summary, sumI Symbolic-summary, sumS

Verification-condition (VC) generator

VC: assert ( sumS ≠ sumI)

SMT Solver

R

SITV: Revealed Bugs

== sat

Validation Failed (Report Bug)

Found 29 
solver failures 

all 
acknowledged 

as bugs by 
McSema 

developers



SITV: A  Few Reported Bugs
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Intel Manual Vol. 2: May 2019

xaddq %rax, %rbx

(1) temp ← %rax + %rbx
(2) %rax ← %rbx
(3) %rbx ← temp

McSema Implementation

xaddq %rbx, %rbx
(with same operands)

(A) old_rbx ← %rbx
(B) temp     ← %rbx + %rbx
(C) %rbx ← temp 
(D) %rbx ← old_rbx



SITV: A  Few Reported Bugs
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Intel Manual Vol. 2: May 2019

cmpxchgl %ecx, %ebx

TEMP ← ebx
IF eax = TEMP THEN
ZF ← 1; 
ebx ← ecx; 

ELSE
ZF ← 0; 
eax ← TEMP; 
ebx ← TEMP; 

FI;

McSema Implementation

cmpxchgl %ecx, %ebx

TEMP ← rbx
IF (32’0 ◦ eax) = TEMP THEN
ZF ← 1; 
ebx ← ecx; 

ELSE
ZF ← 0; 
eax ← TEMP; 
ebx ← TEMP; 

FI;



Lifter Validation: Our Approach
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❖ Phase I Single-Instruction Translation-Validation (SITV)

❖ Phase II Program-level Validation (PLV)



PLV: Intuition

Propose an alternate reference program, T’, generated by 
carefully stitching the SIV-validated IR sequences (using 
compositional lifting) to be compared against T

Semantic equivalence check between T & T’ is reduced to a much 
“cheaper” graph-isomorphism check (using Matcher)  through the 
use of semantic preserving transformations (using Transformer)
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bin_inst1 bin_inst_2 bin_inst_n LIRSnLIRS2, LIRS1 , ,

Validated-Instruction Store Cache

Binary function (P)

bin_inst1

bin_inst2

…

bin_instn

Proposed IR Program, T’

main:
define  … @main(…) {

LIRS1

glue code

LIRSnLIRS2

glue code

…
glue code

}

PLV: Compositional Lifting
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For each function F’ of T’

PLV: Transformation & Matching

define  … @main(…) {
glue code

glue code

…
glue code

}

LIRS1

LIRS2

LIRSn

For each function F of T

ir_inst1

ir_inst2

…
ir_instm

define  … @main(…) {

} FN

F’N

Data-Dependence Graph, GN

Data-Dependence Graph, G’N

Matcher *
Are G & G’N 

isomorphic?

F & F’
semantically 

equivalent

Possible 
Bug in Lifter

Transformer
(LLVM passes)

Transformer
(LLVM passes)

Vertex: 
LLVM instruction
Edge: 
SSA def-use or memory 
dependence relation 

* On the Adequacy of Program Dependence Graphs for Representing Programs, POPL’88

Isomorphism of GN & G’N →

semantic equiv. of FN & F’N,
follows from *Horwitz et al. 



Transformer

❑ Prunes-off syntactic differences between T & T’ except for
▪ Names of virtual registers, and 
▪ Order of non-dependent instructions

❑ Transformer uses a list of LLVM optimization passes one for each 
function pair

❑ Pass list is derived using pass sequence autotuning 

Optimization passes 
NOT formally-verified



Autotuning Based Transformer

Used OpenTuner* framework for autotuning

▪ Search Space: Includes 17 LLVM optimization passes (manually 
discovered)

▪ Objective Function: To maximize number of  matching nodes of 
the candidate data dependence graphs  

* OpenTuner: An Extensible Framework for Program Autotuning, PACT’14



PLV: Runtimes

Evaluated PLV on 2348 LLVM single-source benchmark functions

❑ Compositional Lifting: 0.05s – 5.57s, median – 0.63s

❑ Autotuning: 10.7 s - 20 m, median - 6.7 m

❑Matcher: 0.06s − 119.6s, median – 5 s



PLV: Results

❑ Proved correctness of 2254 /2348 translations; success rate - 96%

❑ LOC of lifted IR: ranges from 86 − 32105, median - 611

❑Manual inspection shows the remaining 4% to be false alarms



Summary

❖ Validation of lifters w/o instrumentation or heavyweight 
equivalence checking is feasible

❖ Formal translation validation of single machine instructions can be 
used as a building block for scalable full-program validation


