
GRI: Interpreter of a dynamic language for GRaph
algorithms

Sandeep Dasgupta
University Of Illinois at Urbana Champaign.

sdasgup3@illinois.edu

ABSTRACT
As graphical models are increasingly become popular in various
fields, the domain experts often struggle to represent and compute
on such models in a convenient and efficient way. In this project
we develop a dynamically typed language which provides the de-
sired convenience of representation of those models without loos-
ing much on the efficiency of doing computation on them.

Keywords
Graph Algorithm, dynamically typed language, interpreter

1. INTRODUCTION
As graphical models are increasingly being used in various fields

like biochemistry (genomics), electrical engineering (communica-
tion networks and coding theory), computer science (algorithms
and computation) and operations research (scheduling), organiza-
tional structures, social networking, there is a need to represent and
allow computation on them in a convenient and efficient way. This
involves (but not limited to)

• Designing a language which provide an convenient interface
to the programmer to program those models. This is essential
so that even for domain experts who are not coding experts
can code and reason about their implementation. Ease of
interface could be due to:

– Expressive power of the language representing those
models.

– Intuitive extensibility of the language.

– Ability of the language to provide exploratory program-
ming, where the user may experiment with different
ideas (without dwelling much into the language syntax)
before coming to a conclusive one.

For the above reasons we are proposing a dynamically typed
language (where a variable can bound to a value of any type)
to represent the graphical models. Following are some of the
benefits of a dynamically typed language:

.

– It’s more concise - A lot of extraneous boilerplate code
(related to type declarations, type casting logic) can be
removed. Shorter code is marginally quicker to write,
but more importantly it can be quicker to read and main-
tain (since we don’t need to wade through many pages
of code to get a grip on what is happening)

– Dynamic typing is arguably more suitable for interac-
tive, REPL-like programming for rapid prototyping, real-
time debugging of running program instances.

– Lack of compile time, meaning quicker turnaround.

– Can pass variables/objects between routines/modules
without having to know or declare their type.

• As programs in our language is going to be interpreted, we
will be loosing performance w.r.t the compiled version of
those programs. The reason we are making this trade off (of
designing an interpreter as opposed to a compiler) is because
our priority is to provide convenience to the programmer.

Despite of the obvious reason of slowdown, we should strive
not to loose much on the runtime performance. Designed
language need to be efficient in the following sense.

– Underlying design decisions including data structures
need to be carefully crafted so that we should not loose
performance because of bad design choices.

– Implementation need to be scalable w.r.t the space/time
requirements. This is important because most of the
graph algorithm typically work on huge input sizes.

2. RELATED WORK
Our work in mostly inspired by the line of work by GUESS [4]

and Graphal [2].
GUESS, a novel system for graph exploration that combines an

interpreted language with a graphical front end that allowsresearchers
to rapidly prototype and deploy new visualizations. GUESS also
contains a novel, interactive interpreter that connects the language
and interface in a way that facilities exploratory visualization tasks.
They used a domain specific embedded language which provides
all the advantages of Python with new graph specific operators,
primitives, and shortcuts.

Graphal is an interpreter of a programming language that is mainly
oriented to graph algorithms. There is a command line interpreter
and a graphical integrated development environment. The IDE con-
tains text editor for programmers, compilation and script output,
advanced debugger and visualization window. The progress of the
interpreted and debugged graph algorithm can be displayed in 3D
scene.

DPT_x DPT_x

1 2

3 4 5

0

DPT_y

DPT_x DPT_x DPT_y
MGR MGR MGR

Figure 1: An example graph

function main(argv) main() {
S1: g = graph();
S2: ...
S3: g.setDirected(true);
S4: ...
S5: v0 = g.createVertex();
S6: v0.__id = 0;
S7: v0.__DPT_x = 1;
S8: v0.__DPT_y = 0;
S9: v0.__MGR = 1;

S10: ...
S11: v3 = g.createVertex();
S12: v3.__id = 3;
S13: v3.__DPT_x = 1;
S14: v3.__DPT_y = 0;
S15: v3.__MGR = 0;
S16: ...
S17: g.createEdge(v0,v3);

}

Figure 2: Example code snippet to create a graph

Our language design is inspired by the above two work. But we
additionally provided a number of built-in functions for supporting
some basic computations on graphs. This not only help us getting
convenient short hand notations to achieve those basic computa-
tion, but also we gain on performance due the fact that those basic
tasks are now available in compiled version.

3. QUICK TOUR OF LANGUAGE
In this section we will provide some insights of designed lan-

guage using some motivating examples.

EXAMPLE 1. Figure1, shows a directed graph where the nodes
represent the employees and the edges between them represents the
email conversation from one employee to other. For example,Node
0 represents an employee inDPT_x who is a Manager as well (this
is attributed by theMGR tag). Similarly,Node 3 represents aDPT_x
employee. The edge betweenNode 3 and Node 0 represents the
email conversation from employeeNode 3 to employeeNode 0.

Now let us first talk about the ways to represent this graph in our
implementation. One way is as shown in 2.

At lineS1, a new graph variable is created.S3 sets that the graph
is directed.S5 creates a nodeNode 0 of this graph. As nodes and
edges are the basic building block of a graph we have made them
the first class objects which allow users to access them directly.
LinesS6 - S9 sets various properties of the vertex. For example, it
says that the vertex has__id = 0 , it belongs to__DPT_x, does not
belongs to__DPT_y and its__MGR property is true. Similar proper-
ties are set for vertex node with__id = 3 (LinesS11 - S15). And
finally a directed edge between them is created at lineS17.

function main(argv) main() {
S1: g = graph();
S2: g.loadFromFile(argv[0]);
S3: displayAdjMatrix(g.getAdjacencyMatrix(), g.getVertices());
S4: ...
S5: dpt_x_employee = g.getVertexSetWithProperty("__DPT_x", 1.0);
S6: mgr_employee = g.getVertexSetWithProperty("__MGR", 1.0);
S7: ...
S8: /* Set of __DPT_x employees who are __MGR as well */
S9: dpt_x_AND_mgr = dpt_x_employee.intersection(mgr_employee);

S10: ...
S11: println("Set of __DPT_x employees who are __MGR as well");
S12: foreach(employee; dpt_x_AND_mgr) {
S13: println(" " + employee.__id + " ");
S14: }
S15: ...
S16: /* Set of __DPT_x employees who are NOT __MGR */
S17: dpt_x_MINUS_mgr = dpt_x_employee.difference(mgr_employee);
S18: ...
S19: it = dpt_x_MINUS_mgr.iterator();
S20: ...
S21: println("Set of __DPT_x employees who are NOT __MGR");
S22: while(it.hasNext()) {
S23: employee = it.next();
S24: println(" " + employee.__id + " ");
S25: }
S26: ...
S27: // Email Exchanges from MGRs to non-MGR DPT_x employee
S28: emailExchanges = mgr_employee -> dpt_x_MINUS_mgr;
S29: ...
S30: // Email Exchanges from non-MGR DPT_x employee to MGRs*/
S31: emailExchanges = mgr_employee <- dpt_x_MINUS_mgr;
S32: ...
S33: // Email Exchanges between non-MGR DPT_x employee and MGRs*/
S34: emailExchanges = mgr_employee <-> dpt_x_MINUS_mgr;
S35: ...

}

Figure 3: Example code snippet to create a graph

One thing to note here is that the methods likegraph(), setDirected(),
createVertex() andcreateEdge() are all built-in compiled func-
tions.

Figure 3 shows another way to represent graph. It uses an in-
put file to be fed to the interpreted program. The format of the
input file is shown in Figure 4. Such an input file is read from
the command line arguments and used to create a graph as shown
in line S2 of Figure 3. AtS3, we can see two built-in functions
getAdjacencyMatrix & getVertices on graph which respec-
tively gives an array of array representing the adjacency matrix
representation of the graph and a set of vertices in the graph. displayAdjMatrix
is just a method call, the definition of which is not shown for brevity.
Now lets try to solve certain queries using the graph at Figure 1.

In case we want to get all the nodes in the graph who are__DPT_x
employees, then the query to get all those nodes is shown at lineS5.
Similarly, the query at lineS6, gives the nodes for which the prop-
erty__MGR is set to true. One thing to note here that the return value
of both the queries are sets which are amenable to set operations.

For example, in case we want to get all the employees who are
both department__DPT_x employee and managers , we can get that
using the set intersection as shown at lineS9. LineS8, shows the
multiline comment we support. LineS12 shows a way to iterate
over the set elements using foreach construct.

Again, if we want to get the set of__DPT_x employees who are
NOT __MGR, we can write that query as in lineS17. LineS19 shows
another way to get an iterate on composite data structures.

Now once we have two sets of nodes each with a specific prop-

DPT_x DPT_x DPT_y

DPT_x DPT_x DPT_y
MGR MGR MGR

3 4 5

0 21

6 7

1 __EMAIL

0 1 1 0
1 0 1 0
2 1 0 1
3 0 1 0
4 0 1 0
5 0 0 1

3 __MGR __DPT_x __DPT_y

//Vertices with property values

//Edges with property values

//#Vertices #Edges

//#Vertex property and names

//#Edge property and names

0 4 0.4
1 3 1.3
1 5 1.5
2 4 2.4
3 0 3.0
4 1 4.1
5 2 5.2

//isDirected

1

Figure 4: The input file used for graph creation

S1: define("NUM_VERTICES", "10");
S2: define("NOTVISITED", "0");
S3: define("VISITED", "1");

function dfs(v, dfsorder) {
S4: if(v.visit == VISITED)
S5: return;
S6:
S7: println("vertex visited: " + v.num);
S8: v.visit = VISITED;
S9:

S10: dfsorder.pushBack(v);
S11:
S12: foreach(neighbor; v.getNeighbors())
S13: dfs(neighbor, dfsorder);

}

function main(argv) {
S14: g = graph();
S15: g.loadFromFile(argv[0]);
S16:
S17: dfsorder = array(0);
S18: dfs(first, dfsorder);
S19:
S20: for(vertex: dfsorder) {
S21: println(" " + vertex.__id + " ");
S22: }

}

Figure 5: Example code snippet for dfs traversal on a graph

erty, we can query for the edges between them. For example, lines
S28, S31 andS34 gives the set of edges emanating from one set of
nodes to other set of nodes. For example,Set1 → Set2 gives all
the directed edges from vertices in setSet1 to the vertices inSet 2.
Similarly,Set1 ← Set2 gives all the directed edges from vertices
in setSet2 to the vertices inSet 1. Note that operators← and
→ are applicable to directed graphs and the operator↔ is appli-
cable to both directed and undirected graphs. For directed graphs,
it gives all the bidirectional edges between two node sets and for
undirected graphs, it returns all the edges between two nodesets.

EXAMPLE 2. Figure 5 represents another example implemen-
tation the depth first traversal on a graph in our proposed lan-
guage. In this example we are trying to store the dfs traversal order
of the vertices as well. For that we declared an array at lineS17
and used it to store the traversal order at lineS10. The method
getNeighbors() at line S12 is again a built-in function and re-
turns the neighboring vertices of the receiver vertex.

4. LANGUAGE DESIGN

The syntax of the language is an oversimplified version of C,
but without mention of any types. The operations on incompatible
types will be error-ed out while interpreting.

We have implemented the tokenizer and syntax analyzer using
flex and bison. We are supporting syntax like #include("filename")
and #define("PI", "3.14") while doing a single pass of parsing (i.e.
Preprocessing of these constructs are done while parsing).This is
achieved by using flex’s internal stack to manage multiple buffers.
The grammar rules are mostly borrowed from [1]. The rules are
compiled by bison tool to generate the C parser. We are able togen-
erate the AST corresponding to test-cases confirming to the gram-
mar rules. Our AST is basically a list of function definitions. Each
function definition object contains name of the function, a set of
formal arguments and a list of body statements. These body state-
ments could be an assignment, loop-statement, function call, etc.
The leafs of the AST could be an identifier, int, float, true, false,
null, string, vertex, edge or graph.

Some of the key features of the parser is as follows:

• Support of C statements likeif then, if then else, while,
for, foreach.

• Support ofbreak, continue within loop-body andreturn
in function-body. As we are representing both loop-body
and function-body as compound statements (i.e. anything
between “{” & “}”), so we do not have to distinguish these
two cases. But we will error-out if break is used inside non-
loop body. The detailed semantics of executing abreak,
continue and return will be discussed in the interpreter
runtime section.

• Supporting graph as first class objectgraphnode. The syn-
tax to declare a graph isg = graph(); which will be rep-
resented in AST as an assignment-node with left-node con-
taining an identifier and right node as a function call. Now
this function call corresponds to a built in function that re-
turns agraphnode (which is of one the leaf nodes of AST)
on execution.

• Supporting vertices and edges as first class objects which
contains a map to add properties. This feature is useful in
various graph algorithms like in dfs traversal 5, we uses a
vertex property “visited” to keep track of vertices alreadyex-
plored.

• We are supporting composite data-structures like array, struct
and set and iterators on them. Figure 6 represents a code
snippet representing some of the operation on these data-
structures.

• The language semantics will be same as that of C as we are
using a subset of it.‘

• All variables are defined as local and are valid only it the
scope of the current function (function not block).

• The language specify no constructs for variable declaration
and type specification. The interpreter uses some inner data
types (like null, Bool, int, float, string, array,
struct, set, graph, vertex, edge) which can be dy-
namically changed with assign command.

function main(argv) main() {
S1: arr = array(5);
S2: i = 0;
S3: ...
S4: foreach(var ; arr)
S5: var = i++;
S6: ...
S7: println("-- array items --");
S8: foreach(var ; arr)
S9: println(var);

S10: ...
S11: st = struct();
S12: st.number = 42;
S13: st.pi = 3.14;
S14: st.str = "bagr";
S15: ...
S16: println("-- struct items --");
S17: foreach(var ; st)
S18: println(var);
S19: println("-- struct items using iterator --");
S20: it = st.iterator();
S21: while(it.hasNext())
S22: ‘ println(it.next());
S23: ...
S24: g = graph();
S25: v1 = g.generateVertex();
S26: v2 = g.generateVertex();
S27: v3 = g.generateVertex();
S28: e1 = g.generateEdge(v1, v2);
S29: e2 = g.generateEdge(v2, v3);
S30: ...
S31: v1.color = "red";
S32: v2.color = "green";
S33: v3.color = "blue";
S34: e1.value = 0.5;
S35: e2.value = 0.4;
S36: ...
S37: println("-- vertex set --");
S38: foreach(var ; g.getVertices())
S39: println("" + var + ": " + var.color);
S40: ...
S41: println("-- edge set --");
S42: foreach(var ; g.getEdges())
S43: println("" + var + ": " + var.value);

}

Figure 6: Example code snippet to show operatons on array,
set and struct

5. INTERPRETER RUNTIME
The following are the key features of the runtime:

• The runtime starts with searching for function definitionfunction
main(argv) and then creates a function call out of it and exe-
cute it. While creating the function call it uses the command-
line parameters as the actual parameters of the function call.

• The execution of a function call involves finding the corre-
sponding function definition, checking if the number of for-
mal and actuals are equal and then pushing a call stack frame
(which contains the mapping between the formal and actual
values passed to them) in a global call stack. After that, the
function is executed w.r.t the current context(i.e. the topof
the call stack).

• The execution of the function involves executing a list of
statements. The statements may add further mappings in
the current call stack frame. Whenever a name (identifier)
is refereed, the mapping in the current context need to be
consulted to get the actual value of it.

• The semantics ofbreak, continue or return is supported
using the try-catch mechanism of C++.

For example, while interpreting aloop-body, whenever a
breakis encountered, a correspondingbreak-object is thrown,
which is caught in a place outside the entire loop execution
in order to implement the semantics of break.

Similarly, while executing aloop-body, whenever acontinue
is encountered, acontinue-object is thrown, which is caught
outside theloop-body execution so as to skip the current it-
eration and continue with theloop-incr execution (in case
of for loop) andloop-condition-expr execution.

And finally, while executing afunction-body, which is a
list of statements, when any one of those statements is a
return, a return-object is thrown, which is caught out-
side of the loop which is going over that list and in this way
the semantics of return is maintained.

• Occurrence ofbreak andcontinue within non-loop body
triggers an error. While interpreting a node-block (which is
a set statements within “{” and “}”), whenever the runtime
finds abreak or continue it throws a object. Now if this ob-
ject is caught inside a non-loop block then error is reported.

• Division by zero and operations on incompatible types are
runtime errors.

Also we are supporting a number of built-in functions as shoen
in Table 1. The advantage of using is that we can save a lot of
interpretation time.

6. EVALUATION
In order to evaluate the performance of our design, we will be

coding a number of well known graph related algorithms in our
language and run the proposed interpreter on them. The baseline
of our evaluation will the the same algorithms implemented in C,
compiled by the C compiler and executing the compiled binary.

We are planning to compare the following.

• Runtime performance of the interpreter w.r.t the compiled
version of the code.

• Convenience of representation in our language w.r.t C lan-
guage.

Table 1: List of all the built-in functions provided.
Category Name of the function Synopsis

Output
println

Convert the object to a string representation and
send the result to the standard output and append
newline.

print
Convert the object to a string representation and
send the result to the standard output.

Container

array(size) Create a new array of specified size.
struct() Return a new struct.
set() Return a new set
size(array|struct|set) Return the size of the argument container.
union(set, set) Return union of two sets.
intersection Return intersection of two sets.
difference Return difference of two sets.
pushFront(array, elem) push an element elem to front of array
pushBack(array, elem) push an element elem to back of array
popFront(array) Remove an elem from front of array
popBack Remove an elem from back of array
front Get the front elemnt of an array.
back Get the back element of an array

Iterator
iterator(object)

Return a copy of a container and
set its inner iterator to the beginning.

hasNext(Object) Check if a container has a next item.
next(Object) Get the next item.

Graph

graph() Returns a newly created graph
loadFromFile(graph) Load a graph from a file

saveToFile(graph, filename)
Save rhe current state of the graph
to a file.

setDirected(graph, bool) Set the directed flag of the graph and return the previous value.
isDirected(graph) Check if a graph is directed.
generateVertex(graph) Create a new vertex in a graph.
generateEdge(graph, vertex, vertex) Create a new edge in a graph.
deleteVertex(graph, vertex) Delete a vertex from a graph.
deleteEdge(graph, edge) Delete an edge from a graph.
getNumVertices(graph) Get count of vertices in a graph.
getNumEdges(graph) Get count of edges in a graph.
getVertices(graph) Get graph’s vertices as a set object.
getEdges(graph) Get graph’s edges as a set object.
getNeighbors(vertex) Get all neighbors of a vertex as a set object.

getBeginVertex(edge)
Get the begin vertex of an edge.
If the graph is not directed, one of the
edge’s vertices will be returned.

getEndVertex(edge)
Get the end vertex of an edge.
If the graph is not directed, one of the
edge’s vertices will be returned.

getAdjacencyMatrix(graph)
Create adjacency matrix from a graph.
An array of array will be returned.

getTransitiveClosure(graph)
Returns the transitive closure of the adjascent
matrix representation of the graph. Uses
the Floyd Warshall Algorithm.

getShortestPath(graph, weight, start, end)

Returns an array containing two elements.
First, the parent of each vertex in the shortest path tree.
Second, the distance of each vertex from start in that
shortest path tree.

If end == null, the the algorithm will compute the shortest
distance of all the vertices from start. Else it stops when the
shortest distance of end vertex from start is computed.

weight (a string) signifies which of the properties of the
edge need to be considered for computing min distance.

Uses Dijkstras Algorithm with min heap.

getMST(graph, weight)

Return the parent of each vertex in the minimum snapping tree.

weight (a string) signifies which of the properties of the
edge need to be considered for computing min distance.

Uses Prim’s Algorithm.
getVertexSetWithProperty(graph, property, value) Get the set of vertices with property string equals the value.
getbfsOrdering(graph) Get the set of vertices in bfs traversal order.
getdfsOrdering(graph) Get the set of vertices in dfs traversal order.

Table 2: Slowdown of GRI w.r.t C implementation.

Algorithm
Fully Scripted

time (secs)
C implementation

time(secs)
Slowdown

Transitive Closure 1137.40 4.04 281.5
Shortest Path 6.37 0.02 318.5
Minimum Spanning Tree 6.34 0.02 317.0
Graph Coloring 138.17 0.65 212.6

6.1 Runtime Performance Comparison
We have implemented a couple of algorithms in both our lan-

guage and C. The algorithms are Transitive Closure of a graph
using Floyd Warshall’s algorithm, Shortest Path using Dijkstra’s
algorithm, Minimum Spanning Tree using Prim’s algorithm and
Chaitin’s Optimistic graph coloring algorithm. The input graph
used in all the cases is a randomly generated graph consisting of
vertices = 500, edges = 1000. For Graph Coloring, we used the
input graph with vertices = 125, edges = 1000. This is because
it takes a lot of time for our interpreter execution to complete. In
Table 2, we compared the runtime of our interpreter (henceforth
called GRI) with execution time of compiled binary obtainedby
compiling the C implementation.

Note that, while implementing the algorithms, we used the basic
syntax provided by our implementation andNOT used any of the
built-in functions likegetTransitiveClosure(), getShortestPath()
or getMST(). We call such implementations as fully scripted.

As we can see that the slowdown are huge. To counter that, we
planned to come up with following built-in functions.

• Graph::getAdjMatrix();

• Graph::getTransitiveClosure();

• Graph::getShortestPath(wt, start, end);

– Returns the shortest distance from vertex start to each
vertex in the shortest path tree.

– Returns parent of each vertex in the shortest path tree.

– If end == NULL, return the shortest path from start to
all vertices.

– If end != NULL, return the shortest path from start to
end vertex.

– Weight “wt” (a string) signifies which of the properties
of the edge need to be considered for computing min
distance.

• Graph::getMST(wt);

– Return the parent of each vertex in the minimum snap-
ping tree.

– Weight “wt” (a string) signifies which of the properties
of the edge need to be considered for computing min
distance.

Table 3 shows the speedup of our implementationwith built-in
functions w.r.twithout using built-in functions (i.e. fully Scripted).
The graph used in all the cases consist of vertices = 125, edges =
1000.

Finally, we implemented the above mentioned algorithms using
built-in functions and compared with C (Figure 4). The graphused
in all the cases consist of vertices = 500, edges = 1000. For Graph
Coloring, we used the graph with vertices = 125, edges = 1000.

Table 3: Speedup with built-in functions w.r.t without using
built-in functions.

Algorithm
With Built-ins

time (secs)
Fully Scripted

time(secs)
Speedup

Transitive Closure 0.54 18.19 33.6
Shortest Path 0.08 0.51 6.3
Minimum Spanning Tree 0.05 0.47 9.4

Table 4: Slowdown of our implementation w.r.t C implementa-
tion.

Algorithm
GRI

Time(secs)
C

Time(secs)
Slowdown

Transitive Closure 10.26 4.04 2.5
Shortest Path 0.09 0.02 4.5
Minimum Spanning Tree 0.09 0.02 4.5
Graph Coloring 138.17 0.65 212.6

6.2 Comparison w.r.t Representation Conve-
nience

We will be using the number of lines of code as a metric to com-
pare the convenience that our language is providing w.r.t C.

As we are aware of the fact that this metric is not that useful if
we are comparing two languages having different conventions for
how much we should put on a line. But as our language is a subset
of C, so this metric makes sense, but to yield meaningful results we
need to be careful about the following aspects.

• Both the code implementations should produce the same out-
put.

• In both the code implementation, the backward slice of the
output instructions should cover the entire code. In other
words, there should not be any redundant code which is not
contributing to the generated output.

• Both the code implementation should follow similar coding
guidelines [3].

• Both the programs need to be equally readable in terms of
indentation, newlines, spaces and comments.

We compared the number of lines of static code written in our
language with that written in C. Table 5 represents the results of
this comparison, which clearly shows that we need fewer lines of
code to implement the same algorithm.

Table 5: Comparison of Number of lines of code in our imple-
mentation w.r.t C implementation.

Algorithm Proposed language C
Transitive Closure (with built-in) 36 129
Transitive Closure (fully scripted) 49 129
Shortest Path (with built-in) 64 191
Shortest Path (fully scripted) 159 191
Minimum Spanning Tree (with built-in) 40 171
Minimum Spanning Tree (fully scripted) 128 171
Graph Coloring 135 213

7. REFERENCES
[1] ANSI C Yacc grammar.

http://www.quut.com/c/ANSI-C-grammar-y-2011.html.

http://www.quut.com/c/ANSI-C-grammar-y-2011.html

[2] Graphal: Graph Algorithms Interpreter.
[3] Making The Best Use of C.

http://www.gnu.org/prep/standards/standards.html#Writing-C.
[4] E. Adar. GUESS: A Language and Interface for Graph

Exploration. InProceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’06, pages
791–800, New York, NY, USA, 2006. ACM.

http://www.gnu.org/prep/standards/standards.html#Writing-C

	Introduction
	Related Work
	Quick Tour of Language
	Language Design
	Interpreter Runtime
	Evaluation
	Runtime Performance Comparison
	Comparison w.r.t Representation Convenience

	References

