GRI: Interpreter of a dynamic language for GRaph
algorithms

Sandeep Dasgupta
University Of lllinois at Urbana Champaign.

sdasgup3@illinois.edu

ABSTRACT

As graphical models are increasingly become popular inouari
fields, the domain experts often struggle to represent anpate
on such models in a convenient and efficient way. In this ptoje
we develop a dynamically typed language which provides tie d
sired convenience of representation of those models witlhos-
ing much on the efficiency of doing computation on them.

Keywords
Graph Algorithm, dynamically typed language, interpreter

1. INTRODUCTION

As graphical models are increasingly being used in vari@ldgi
like biochemistry (genomics), electrical engineeringnjoounica-
tion networks and coding theory), computer science (atlgos
and computation) and operations research (schedulingdnra-
tional structures, social networking, there is a need toasgnt and
allow computation on them in a convenient and efficient waysT
involves (but not limited to)

e Designing a language which provide an convenient interface
to the programmer to program those models. This is essential
so that even for domain experts who are not coding experts
can code and reason about their implementation. Ease of
interface could be due to:

— Expressive power of the language representing those
models.

— Intuitive extensibility of the language.

— Ability of the language to provide exploratory program-
ming, where the user may experiment with different
ideas (without dwelling much into the language syntax)
before coming to a conclusive one.

For the above reasons we are proposing a dynamically typed
language (where a variable can bound to a value of any type)
to represent the graphical models. Following are some of the
benefits of a dynamically typed language:

— It's more concise - A lot of extraneous boilerplate code
(related to type declarations, type casting logic) can be
removed. Shorter code is marginally quicker to write,
but more importantly it can be quicker to read and main-
tain (since we don't need to wade through many pages
of code to get a grip on what is happening)

— Dynamic typing is arguably more suitable for interac-
tive, REPL-like programming for rapid prototyping, real-
time debugging of running program instances.

— Lack of compile time, meaning quicker turnaround.

— Can pass variables/objects between routines/modules
without having to know or declare their type.

As programs in our language is going to be interpreted, we
will be loosing performance w.r.t the compiled version of
those programs. The reason we are making this trade off (of
designing an interpreter as opposed to a compiler) is becaus
our priority is to provide convenience to the programmer.

Despite of the obvious reason of slowdown, we should strive
not to loose much on the runtime performance. Designed
language need to be efficient in the following sense.

— Underlying design decisions including data structures
need to be carefully crafted so that we should not loose
performance because of bad design choices.

— Implementation need to be scalable w.r.t the space/time
requirements. This is important because most of the
graph algorithm typically work on huge input sizes.

2. RELATED WORK

Our work in mostly inspired by the line of work by GUESE! [4]
and Graphal [12].

GUESS, a novel system for graph exploration that combines an
interpreted language with a graphical front end that all@searchers
to rapidly prototype and deploy new visualizations. GUE&® a
contains a novel, interactive interpreter that conne@dahguage
and interface in a way that facilities exploratory visuatian tasks.
They used a domain specific embedded language which provides
all the advantages of Python with new graph specific opesator
primitives, and shortcuts.

Graphal is an interpreter of a programming language thaaislyn
oriented to graph algorithms. There is a command line inédep
and a graphical integrated development environment. TBeckin-
tains text editor for programmers, compilation and scrigtpat,
advanced debugger and visualization window. The progretteo
interpreted and debugged graph algorithm can be display8®i
scene.

MGR
DPT_x

MGR
DPT_x

()

MGR
DPT_y

©

DPT_x DPT_x DPT_y

Figure 1: An example graph

function main(argv) main() {
S1: g = graph();
S2: R
S3: g.setDirected(true);
S4: Ce
S5: v0 = g.createVertex();
S6: v0. _id = 0;
S7: v0. _DPT x = 1;
S8: v0. __DPT_y = 0;
S9: v0. MR = 1,
S10: .
S11: v3 = g.createVertex();
S12: v3. _id = 3;
S13: v3.__DPT_x = 1;
Sl4: v3.__DPT_y = 0;
S15: v3. MR = 0;
S16: .
S17: g. creat eEdge(vO0, v3);

Figure 2: Example code snippet to create a graph

Our language design is inspired by the above two work. But we
additionally provided a number of built-in functions forporting
some basic computations on graphs. This not only help usmgett
convenient short hand notations to achieve those basic w@mp
tion, but also we gain on performance due the fact that thaseb
tasks are now available in compiled version.

3. QUICK TOUR OF LANGUAGE

In this section we will provide some insights of designed- lan
guage using some motivating examples.

ExampLE 1. Figurdd, shows a directed graph where the nodes
represent the employees and the edges between them rapribsen
email conversation from one employee to other. For exanmptiz
0 represents an employeelRT_x who is a Manager as well (this
is attributed by théGRtag). Similarly,Node 3 represents ®PT_x
employee. The edge betwedode 3 and Node O represents the
email conversation from employtlede 3 to employeéode 0.

Now let us first talk about the ways to represent this graphuin o
implementation. One way is as showrllh 2.

AtlineS1, a new graph variable is create@3 sets that the graph
is directed.S5 creates a nodd&bde 0 of this graph. As nodes and

function main(argv) main() {

S1: g = graph();
S2: g. | oadFronFile(argv[0]);
S3: di spl ayAdj Matri x(g. get Adj acencyMatri x(), g.getVertices());
S4: c
S5: dpt _x_enpl oyee = g.get VertexSet Wt hProperty("__DPT_x", 1.0);
S6: myr _enpl oyee = g. get VertexSet WthProperty("__MR', 1.0);
S7: c
S8: /* Set of __DPT x enpl oyees who are __MGR as wel |l */
S9: dpt _x_AND_ngr = dpt_x_enpl oyee. i ntersection(ngr_enpl oyee);
S10: c
S11: println("Set of __DPT_x enployees who are __MR as well");
S12: foreach(enpl oyee; dpt_x_AND mgr) {
S13: printin(" " + enployee.__id + " ");
S14: }
S15: c
S16: /* Set of __DPT_x enpl oyees who are NOT __MGR */
S17: dpt _x_M NUS_mgr = dpt_x_enpl oyee. di f f erence(ngr_enpl oyee) ;
S18: c
S19: it = dpt_x_MNUS_ngr.iterator();
S20: e
S21: printin("Set of __DPT_x enployees who are NOT _ MR');
S22: while(it.hasNext()) {
S23: enpl oyee = it.next();
S24: printin(" " + enployee.__id + " ");
S25:
S26: c
S27: /1 Emai| Exchanges from MGRs to non- MR DPT_x enpl oyee
S28: emai | Exchanges = ngr_enpl oyee -> dpt _x_M NUS_nygr;
S29: c
S30: /1 Email Exchanges from non-MGR DPT_x enpl oyee to MRs*/
S31: emai | Exchanges = ngr_enpl oyee <- dpt_x_M NUS_nygr;
S32: c
S33: /1 Email Exchanges between non-MER DPT_x enpl oyee and MRs*/
S34: emai | Exchanges = ngr_enpl oyee <-> dpt_x_M NUS_ngr;
S35: c

Figure 3: Example code snippet to create a graph

One thing to note here is that the methods tjkeph() , set Direct ed(),
creat eVertex() andcreat eEdge() are all built-in compiled func-
tions.

Figure[d shows another way to represent graph. It uses an in-
put file to be fed to the interpreted program. The format of the
input file is shown in Figur€l4. Such an input file is read from
the command line arguments and used to create a graph as shown
in line S2 of Figure[3. AtS3, we can see two built-in functions
get Adj acencyMatrix & getVertices on graph which respec-
tively gives an array of array representing the adjacencytrima

representation of the graph and a set of vertices in the grdpbpl ayAdj Mat ri x

is just a method call, the definition of which is not shown fewiiy.
Now lets try to solve certain queries using the graph at Feffllir

In case we want to get all the nodes in the graph who ai@PT_x
employees, then the query to get all those nodes is showre&bli
Similarly, the query at liné&6, gives the nodes for which the prop-
erty_ MGRis setto true. One thing to note here that the return value
of both the queries are sets which are amenable to set opesati

For example, in case we want to get all the employees who are
both department_DPT_x employee and managers , we can get that

edges are the basic building block of a graph we have made themusing the set intersection as shown at IB% Line S8, shows the

the first class objects which allow users to access them ttirec
LinesS6 - S9 sets various properties of the vertex. For example, it
says thatthe vertex hasid = 0 ,itbelongsto DPT x, does not
belongs to _DPT_y and its__MGR property is true. Similar proper-
ties are set for vertex node withi d = 3 (LinesS11 - S15). And
finally a directed edge between them is created at3itie

multiline comment we support. Lir8i2 shows a way to iterate
over the set elements using foreach construct.

Again, if we want to get the set of DPT_x employees who are
NOT __MGR, we can write that query asin lirgl 7. Line S19 shows
another way to get an iterate on composite data structures.

Now once we have two sets of nodes each with a specific prop-

DPT_y
perty and names

__MGR _DPT_x _DPT_y
/1#Edge property and names

MAIL

IVertices

©

H
m

ith property values

8 orrore
rooroos

RN EEO
NhormwRE
g
%

i

DPT. DPT_y

7
NROMOWAE OOOROR
B

Figure 4: The input file used for graph creation

S1: define("NUM VERTI CES", "10");
s2: define("NOTVI SITED', "0");
S3: define("VISITED", "1");
function dfs(v, dfsorder) {
sS4 if(v.visit == VI SI TED)
S5: return;
S6
S7: printin("vertex visited: " + v.num;
S8: v.visit = VISITED,
S9:
S10: df sor der. pushBack(Vv);
S11:
S12: foreach(nei ghbor; v.getNei ghbors())
S13: df s(nei ghbor, df sorder);
}
function main(argv) {
S14: g = graph();
S15: g. l oadFronFile(argv[0]);
S16:
S17: df sorder = array(0);
S18: df s(first, dfsorder);
S19:
S20: for(vertex: dfsorder) {
S21: printin(" " + vertex.__id+" ");
S22:

Figure 5: Example code snippet for dfs traversal on a graph

erty, we can query for the edges between them. For exampéds, li
S28, S31 and S34 gives the set of edges emanating from one set of
nodes to other set of nodes. For exampkt,1 — Set 2 gives all

the directed edges from vertices in Set 1 to the vertices irset 2.
Similarly,Set 1 — Set 2 gives all the directed edges from vertices
in setSet 2 to the vertices irbet 1. Note that operators— and

— are applicable to directed graphs and the operateris appli-
cable to both directed and undirected graphs. For directepgs,

it gives all the bidirectional edges between two node setsfan
undirected graphs, it returns all the edges between two rsede

a

EXAMPLE 2. Figure[d represents another example implemen-
tation the depth first traversal on a graph in our proposed-lan
guage. In this example we are trying to store the dfs travenster
of the vertices as well. For that we declared an array at 18i¢
and used it to store the traversal order at li8¢0. The method
get Nei ghbor s() at line S12 is again a built-in function and re-
turns the neighboring vertices of the receiver vertex. 0

4. LANGUAGE DESIGN

The syntax of the language is an oversimplified version of C,
but without mention of any types. The operations on incorbjet
types will be error-ed out while interpreting.

We have implemented the tokenizer and syntax analyzer using
flex and bison. We are supporting syntax like #include("tlee")
and #define("PI", "3.14") while doing a single pass of paggire.
Preprocessing of these constructs are done while parsiigg.is
achieved by using flex’s internal stack to manage multipliéelbst
The grammar rules are mostly borrowed froi [1]. The rules are
compiled by bison tool to generate the C parser. We are ajgierto
erate the AST corresponding to test-cases confirming tortma-g
mar rules. Our AST is basically a list of function definitiosach
function definition object contains name of the function,et af
formal arguments and a list of body statements. These badly-st
ments could be an assignment, loop-statement, functidnetal
The leafs of the AST could be an identifier, int, float, trudséa
null, string, vertex, edge or graph.

Some of the key features of the parser is as follows:

e Support of C statements liké then,if then el se,while,
for,foreach.

e Support ofbr eak, cont i nue within loop-body and et urn
in function-body. As we are representing both loop-body
and function-body as compound statements (i.e. anything
between “{" & “}"), so we do not have to distinguish these
two cases. But we will error-out if break is used inside non-
loop body. The detailed semantics of executingraak,
continue andreturn will be discussed in the interpreter
runtime section.

e Supporting graph as first class objgcaphnode. The syn-
tax to declare a graph s = graph(); which will be rep-
resented in AST as an assignment-node with left-node con-
taining an identifier and right node as a function call. Now
this function call corresponds to a built in function that re
turns agr aphnode (which is of one the leaf nodes of AST)
on execution.

e Supporting vertices and edges as first class objects which
contains a map to add properties. This feature is useful in
various graph algorithms like in dfs traver§hl 5, we uses a
vertex property “visited” to keep track of vertices alreaky
plored.

e \We are supporting composite data-structures like arrayctst
and set and iterators on them. Figlile 6 represents a code
snippet representing some of the operation on these data-
structures.

e The language semantics will be same as that of C as we are
using a subset of it.*

e All variables are defined as local and are valid only it the
scope of the current function (function not block).

e The language specify no constructs for variable declaratio
and type specification. The interpreter uses some inner data
types (likenull, Bool, int, float, string, array,
struct, set, graph, vertex, edge) which can be dy-
namically changed with assign command.

Si1:
S2:
S3:

S5:

S6:

S7:

S8:

S9:
S10:
S11:
S12:
S13:
S14:
S15:
S16:
S17:
S18:
S19:
S20:
S21:
S22:
S23:
S24:
S25:
S26:
S27:
S28:
S29:
S30:
S31:
S32:
S33:
S34:
S35:
S36:
S37:
S38:
S39:
S40:
S41:
S42:
S43:

Figure 6: Example code snhippet to show operatons on array,

function main(argv) main() {
arr = array(5);
i =0;

foreach(var ; arr)
var = i ++;

b}intln("-- array items --");
foreach(var ; arr)
println(var)

st = struct()
st. nunber = 42;
st.pi =3.14
st.str = "bagr";

printin("-- struct items --");
foreach(var ; st)
println(var)

printin("-- struct items using iterator --"

it =st.iterator()
whi [e(it.hasNext())
“oprintin(it.next());

g = graph();

vl = g.generateVertex()
v2 = g.generateVertex()
v3 = g.generateVertex()
el = g.generateEdge(vl, v2)
e2 = g.generat eEdge(v2, v3);

v1.col or
v2. col or
v3. col or
el.val ue
e2.val ue

"red";
"green";
"bl ue";
0.5;

0.4

b}intln("-- vertex set --");
foreach(var ; g.getVertices())
printin("" + var + "

bfintln("-- edge set --");
foreach(var ; g.getEdges())

printIn("" + var +": " + var.value)

set and struct

" + var.color);

INTERPRETER RUNTIME

The following are the key features of the runtime:

e The runtime starts with searching for function definitiamct i on

mai n(ar gv) and then creates a function call out of it and exe-
cute it. While creating the function call it uses the command
line parameters as the actual parameters of the functian cal

The execution of a function call involves finding the corre-
sponding function definition, checking if the number of for-
mal and actuals are equal and then pushing a call stack frame
(which contains the mapping between the formal and actual
values passed to them) in a global call stack. After that, the
function is executed w.r.t the current context(i.e. the dbp

the call stack).

The execution of the function involves executing a list of
statements. The statements may add further mappings in
the current call stack frame. Whenever a name (identifier)
is refereed, the mapping in the current context need to be
consulted to get the actual value of it.

The semantics dfr eak, continue orreturn is supported
using the try-catch mechanism of C++.

For example, while interpreting laoop- body, whenever a

br eakis encountered, a correspondimgak- obj ect is thrown,
which is caught in a place outside the entire loop execution
in order to implement the semantics of break.

Similarly, while executing &oop- body, whenever @ont i nue
is encountered, @nt i nue- obj ect is thrown, which is caught
outside the oop- body execution so as to skip the current it-
eration and continue with tHeoop- i ncr execution (in case
of for loop) and oop- condi ti on- expr execution.

And finally, while executing d uncti on- body, which is a

list of statements, when any one of those statements is a
return, areturn-object is thrown, which is caught out-
side of the loop which is going over that list and in this way
the semantics of return is maintained.

Occurrence obreak andconti nue within non-loop body
triggers an error. While interpreting a node-block (whish i
a set statements within “{” and “}”), whenever the runtime
finds abr eak orcont i nue it throws a object. Now if this ob-
jectis caught inside a non-loop block then error is reported

e Division by zero and operations on incompatible types are

runtime errors.

Also we are supporting a number of built-in functions as shoe
in Table[1. The advantage of using is that we can save a lot of
interpretation time.

6. EVALUATION

In order to evaluate the performance of our design, we will be
coding a number of well known graph related algorithms in our
language and run the proposed interpreter on them. Theif@sel
of our evaluation will the the same algorithms implementej
compiled by the C compiler and executing the compiled binary

We are planning to compare the following.

e Runtime performance of the interpreter w.r.t the compiled

version of the code.

e Convenience of representation in our language w.r.t C lan-

guage.

Table 1: List of all the built-in functions provided.

Cat egory Name of the function Synopsi s
Convert the object to a string representation and
Qut put println send the result to the standard output and append
pu new i ne.
pri nt Convert the object to a string representation and
send the result to the standard output.
array(size) Create a new array of specified size.
struct() Return a new struct.
set () Return a new set
size(array[struct]set) Return the size of the argunent container.
uni on(set, set) Return union of two sets.
intersection Return intersection of two sets.
Container [difference Return difference of two sets.
pushFront (array, elem push an elenent efemto front of array
pushBack(array, elem push an elenent elemto back of array
popFront (array) Remove an elemfromfront of array
popBack Renove an elem from back of array
front Get the front elemmt of an array.
back Get the back elenment of an array
i terat or ((obj ect) Retu_rn a copy _of a container and o
|terator set its inner iterator to the beginning.
hasNext (Obj ect) Check if a container has a next item
next (o] ect) CGet the next item
graph() Returns a newy created graph
['oadFronFiTe(graph) Load a graph froma fiTe
saveToFi | e(graph, filename) tsivg][ihleecurrent state of the graph
setDirected(graph, bool) Set the directed fTag of the graph and return the previous value.
i sDirected(graph) Check 1T a graph is directed.
gener at eVer t ex(graph) Create a new vertex in a graph.
gener at eEdge(graph, vertex, vertex) Create a new edge in a graph.
del et eVertex(graph, vertex) Delete a vertex froma graph.
del et eEdge(graph, edge) Delete an edge froma graph.
get NunVer ti ces(graph) Get count of vertices in a graph.
G aph get NunEdges(graph) Get count of edges in a graph.
get Vertices(graph) Get graph’s vertices as a set object.
get Edges(gr aph) Get graph’s edges as a set object.

get Nei ghbor s(vertex)

Get alT neighbors of a vertex as a set object.

get Begi nVert ex(edge)

Get the begin vertex of an edge.
If the graph is not directed, one of the
edge’'s vertices will be returned.

get EndVert ex(edge)

Get the end vertex of an edge.
If the graph is not directed, one of the
edge’'s vertices will be returned.

get Adj acencyMat ri x(gr aph)

Create adjacency matrix froma graph.
An array of array will be returned.

get Transi tived osure(graph)

Returns the transitive closure of the adjascent
matrix representation of the graph. Uses
the Floyd Warshall Al gorithm

get Short est Pat h(graph, weight, start, end)

Returns an array containing two elenents.

First, the parent of each vertex in the shortest path tree.
Second, the distance of each vertex fromstart in that
shortest path tree.

If end == null, the the algorithmwill conmpute the shortest
distance of all the vertices fromstart. Else it stops when the
shortest distance of end vertex fromstart is conputed.

wei ght (a string) signifies which of the properties of the
edge need to be considered for conputing mn distance.

Uses Dijkstras Algorithmw th nmin heap.

get MST(graph, wei ght)

Return the parent of each vertex in the mninumsnapping tree.

wei ght (a string) signifies which of the properties of the
edge need to be considered for conputing mn distance.

Uses Prims Algorithm

get VertexSet Wt hProperty(graph, property, value)

Get the set of vertices with property string equals the value.

get bf sOrderi ng(graph)

Cet the set of vertices in bfs traversal order.

get df sOrdering(graph)

Cet the set of vertices in dfs traversal order.

Table 2: Slowdown of GRI w.r.t C implementation.

Table 3: Speedup with built-in functions w.r.t without using

built-in functions.

With Built-ins

Fully Scripted

Algorithm Fqlly Scripted| C implementation Slowdown
time (secs) time(secs)
Transitive Closure 1137.40 4.04 281.5
Shortest Path 6.37 0.02 318.5
Minimum Spanning Treg 6.34 0.02 317.0
Graph Coloring 138.17 0.65 212.6

6.1 Runtime Performance Comparison

We have implemented a couple of algorithms in both our lan-
guage and C. The algorithms are Transitive Closure of a graph
using Floyd Warshall's algorithm, Shortest Path using &lijii’s
algorithm, Minimum Spanning Tree using Prim’s algorithnmdan
Chaitin’s Optimistic graph coloring algorithm. The inputagh
used in all the cases is a randomly generated graph comsistin
vertices = 500, edges = 1000. For Graph Coloring, we used the
input graph with vertices = 125, edges = 1000. This is because
it takes a lot of time for our interpreter execution to contgleln
Table[2, we compared the runtime of our interpreter (hemtefo
called GRI) with execution time of compiled binary obtaineyl
compiling the C implementation.

Note that, while implementing the algorithms, we used treda
syntax provided by our implementation aN@T used any of the
built-in functions likeget Transi ti veC osure(), get Short est Pat h()
or get MST() . We call such implementations as fully scripted.

planned to come up with following built-in functions.
e Graph::getAdj Matrix();
e Graph::getTransitived osure();
e Graph::getShortestPath(wt, start, end);

Returns the shortest distance from vertex start to each
vertex in the shortest path tree.

Returns parent of each vertex in the shortest path tree.

If end == NULL, return the shortest path from start to
all vertices.

If end != NULL, return the shortest path from start to
end vertex.

— Weight “wt” (a string) signifies which of the properties
of the edge need to be considered for computing min
distance.

e Graph::get MST(wt);

— Return the parent of each vertex in the minimum snap-
ping tree.

— Weight “wt” (a string) signifies which of the properties
of the edge need to be considered for computing min
distance.

Table[3 shows the speedup of our implementatidth built-in
functions w.r.without using built-in functions (i.e. fully Scripted).
The graph used in all the cases consist of vertices = 125 sedge
1000.

Finally, we implemented the above mentioned algorithmegisi
built-in functions and compared with C (Figui® 4). The graghd
in all the cases consist of vertices = 500, edges = 1000. FaplGr
Coloring, we used the graph with vertices = 125, edges = 1000.

Algorithm time (secs) time(secs) Speedup
Transitive Closure 0.54 18.19 33.6
Shortest Path 0.08 0.51 6.3
Minimum Spanning Treg 0.05 0.47 9.4

Table 4: Slowdown of our implementation w.r.t C implementa-

fer. GRI C
Algorithm Time(secs)| Time(secs) Slowdown
Transitive Closure 10.26 4.04 2.5
Shortest Path 0.09 0.02 4.5
Minimum Spanning Treg 0.09 0.02 4.5
Graph Coloring 138.17 0.65 212.6

6.2 Comparison w.r.t Representation Conve-

nience

We will be using the number of lines of code as a metric to com-
pare the convenience that our language is providing w.r.t C.

As we are aware of the fact that this metric is not that uséful i
we are comparing two languages having different convegtfon
As we can see that the slowdown are huge. To counter that, we how much we should put on a line. But as our language is a subset
of C, so this metric makes sense, but to yield meaningfulltese
need to be careful about the following aspects.

e Both the code implementations should produce the same out-

put.

e In both the code implementation, the backward slice of the
output instructions should cover the entire code.
words, there should not be any redundant code which is not
contributing to the generated output.

In other

e Both the code implementation should follow similar coding

guidelines|[3].

e Both the programs need to be equally readable in terms of
indentation, newlines, spaces and comments.

We compared the number of lines of static code written in our
language with that written in C. Tab[é 5 represents the tesil
this comparison, which clearly shows that we need fewessliofe
code to implement the same algorithm.

Table 5: Comparison of Number of lines of code in our imple-
mentation w.r.t C implementation.

Algorithm Proposed language C
Transitive Closure (with built-in) 36 129
Transitive Closure (fully scripted) 49 129
Shortest Path (with built-in) 64 191
Shortest Path (fully scripted) 159 191
Minimum Spanning Tree (with built-in) 40 171
Minimum Spanning Tree (fully scripted 128 171
Graph Coloring 135 213

7. REFERENCES

[1] ANSI C Yacc grammar.
nttp://ww.quut.conlc/ANSI - G- granmmar - y- 2011. htm .

http://www.quut.com/c/ANSI-C-grammar-y-2011.html

[2] Graphal: Graph Algorithms Interpreter.
[3] Making The Best Use of C.

http: /7 www. gnu. or g/ prep/ st andar ds/ st andar ds. ht mf #W1t1ng- C.
[4] E. Adar. GUESS: A Language and Interface for Graph

Exploration. InProceedings of the SIGCHI Conference on

Human Factors in Computing Syster@dl '06, pages

791-800, New York, NY, USA, 2006. ACM.

http://www.gnu.org/prep/standards/standards.html#Writing-C

	Introduction
	Related Work
	Quick Tour of Language
	Language Design
	Interpreter Runtime
	Evaluation
	Runtime Performance Comparison
	Comparison w.r.t Representation Convenience

	References

