
Extending GDFA to Nonseparable Framework
Sandeep Dasgupta#1

Computer Science And Engineering, IIT Kanpur
Kanpur, Uttar Pradesh, India
1dsand@cse.iitk.ac.in

Abstract— In this project we explore the possibility of extending
gdfa to the data flow frameworks where data flow information
can be represented using bit vectors but the frameworks are not
bit vector frameworks because they are non-separable e.g., faint
variable analysis, possibly undefined variables analysis, strongly
live variable analysis. This require changing the local data flow
analysis. And we considered statement as an independent basic
block to achieve the same.

Keywords— non-separable framework, bit vector framework,
non-separability, faint variable analysis, possibly undefined
variable analysis, impact chain, extending gdfa.

I. INTRODUCTION

Gdfa uses a carefully chozen set of abstractions which makes
it possible to execute a wide variety of specifications without
having to know the name of the particular analysis being
performed, provided the specifications are given within the
limits of possible values of specification primitives. The
source code of gdfa is distributed under GNU GPL v 2.0 or
later. Currently gdfa supports bit vector framework where the
dataflow values of different entities are independent. But
there are analyses where data flow value of a given entity may
depend on the data flow value of same entity or data flow
value of some other entity. So there is a need to extend the
existing framework.

II. NON-SEPARABLE FRAMEWORK

Separability is based on independence of data flow
properties of entities for which data flow analysis is being
performed. In order to model non-separable flow functions in
terms of Gen and Kill components, instead of defining
constant Gen and Kill we define dependent Gen and Kill as:

Genn(x) = ConstGenn ∪DepGenn(x) (1)
Killn(x) = ConstKilln ∪DepKilln(x) (2)

The flow function fn is defined as:
fn(x) = (x−Killn(x))∪Genn(x) (3)

In bit vector frameworks, the dependent parts are absent
resulting in constant Gen and Kill components. In
non-separable frameworks, the dependence can be of two
types: The data flow value of a given entity may depend on
the data flow value of the same entity or on data flow value of
some other entity. Our work focuses on the former case.
The presence of dependent parts in Gen and Kill makes it
difficult to summarize the effect of multiple statements in a
flow function. Hence, basic blocks for non-separable analyses
consist of single statements. However, multiple consecutive

statements which do not have any data dependence between
them can still be combined into a basic block subject to the
usual control flow restriction. If two consecutive statements
can be executed in any order without affecting program
semantics, then they can be grouped into the same basic block
for data flow analysis of nonseparable flows. Further, a
conditional or unconditional jump need not always be a
separate block. If it is included in a block, it must be the last
statement of the block.
The statements relevant to data flow analysis are divided in
the following categories:

(a) assignment statements x = e where x∈ Var, e∈ Expr,
(b) input statements read(x) which assign a new value to

x,
(c) use statements use(x) which model uses of x for

condition checking, printing and parameter passing
etc., and

(d) other statements.

A. Faint Variable Analysis

A Variable x ∈ Var is faint at a program point u if along
every path from u to End, it is either not used before being
defined or is used to define a faint variable.
Clearly, this is a backward data flow problem. However,
unlike liveness analysis this is an all-paths analysis.

B. Possibly Uninitialized Variable Analysis

A variable x ∈ Var is possibly uninitialized at a program
point u if there exists a path from Start to u along which either
no definition of the variable has been encountered or the
definition uses a possibly uninitialized variable on the right
hand side of the assignment.
Clearly this is a forward data flow problem.

III. CURRENT STATE OF GDFA

The following is the main data structure for specification:

http://www.gnu.org/licenses/gpl.html

struct gimple_pfbv_dfa_spec
{
 entity_name entity;
 initial_value top_value_spec;
 initial_value entry_info;
 initial_value exit_info;
 traversal_direction traversal_order;
 meet_operation confluence;
 entity_manipulation gen_effect;
 entity_occurrence gen_exposition;
 entity_manipulation kill_effect;
 entity_occurrence kill_exposition;
 dfi_to_be_preserved preserved_dfi;

 dfvalue (*forward_edge_flow)
 (basic_block src, basic_block dest);
 dfvalue (*backward_edge_flow)
 (basic_block src, basic_block dest);
 dfvalue (*forward_node_flow) (basic_block bb);
 dfvalue (*backward_node_flow)(basic_block bb);
};

By specifying concreate values to these abstractions gdfa
specifies any analysis.
Also the above structure is used when the definition of Gen
and Kill are constants. Hence this structure also need to be
improved so as to tackle dependent parts of Gen and Kill in a
non-separable framework.

IV. EXTENDING GDFA

We take the following actions to extend the existing
architecture

A. Basic Block Contains Single Statments

1) local dfa: We calculated the const Gen and Kill of each
statement.

2) Global dfa:

Fig. 1 The figure shows how to calculate the global data flow
value of statements within a basic block while doing the
global data flow analysis of that basic block in a backward
data flow problem.

As gdfa does global data flow analysis by iterating over each
basic block in a specified sequence(backward or forward), so

we do the global data flow analysis of the corresponding
statements by computing the Dep Gen and Dep Kill at each
statement. From Fig 1, it is clear that the OUT(stmt_2) =
OUT(B) and IN(B) = IN(stmt_1).

B. Including Other Statement Types

1) Copy statements: Gdfa does not include copy
statements of type (a = b or a = a) for data flow
analysis. So we need to recognize and include that
statement for consideration.

Fig. 2 The C-code showing how to recognize the copy
statement and extract the operand from it.

2) Assigning Indices to Statements
All non-separable analysis work with individual

statements and hence they need to be numbered uniquely.
Now before invoking the gdfa driver, gdfa does this
numbering for reaching definition analysis, but ignores the
numbering of statements which are not of interest to that
analysis, like condition checking statements.But we need to
number those as well for non-separable analysis. So we
numbered those statements keeping the numbering done for
reaching definition analysis intact.

C. Extending the Specification Structure

The main data structure for specification is extended as
follows:
struct gimple_pfbv_dfa_spec
{

 entity_name entity;
 initial_value top_value_spec;
 initial_value entry_info;
 initial_value exit_info;
 traversal_direction traversal_order;
 meet_operation confluence;
 entity_manipulation gen_effect;
 entity_occurrence gen_exposition;
 entity_manipulation kill_effect;
 entity_occurrence kill_exposition;
 dfi_to_be_preserved preserved_dfi;

 dfvalue (*forward_edge_flow)
 (basic_block src, basic_block dest);
 dfvalue (*backward_edge_flow)
 (basic_block src, basic_block dest);
 dfvalue (*forward_node_flow) (basic_block bb);
 dfvalue (*backward_node_flow) (basic_block bb);

 /*@Newly Added Fields : START*/
 statement_type constgen_statement_type;
 precondition constgen_precondition;
 statement_type constkill_statement_type;
 precondition constkill_precondition;
 entity_dependence dependent_gen;
 entity_dependence dependent_kill;
 /*@Newly Added Fields : END*/

};

typedef enum statement_type {
READ_X = 1,
USE_X,
IGNORE_STATEMENT_TYPE
} statement_type;

typedef enum precondition {
X_IN_OPERAND = 1,
X_NOT_IN_OPERAND, OPERAND_IS_

CONST, OPERAND_ISNOT_CONST, IGNORE_PREC
ONDITION } precondition;

typedef enum entity_dependence{
X_IN_GLOBAL_DATA_FLOW_VALUE=1,
X_NOT_IN_GLOBAL_DATA_FLOW_VALUE,
OPER_IN_GLOBAL_DATA_FLOW_VALUE,

OPER_NOT_IN_GLOBAL_DATA_FLOW_VALUE,
IGNORE_ENTITY_DEPENDENCE

} entity_dependence;

We propose that with the above abstract structure
specification of any non-separable analysis can be done.

D. Specifying Faint Variable Analysis

The constant and dependent parts of Gen and Kill for faint
variable analysis are:

The above definitions are specified as follows:

struct gimple_pfbv_dfa_spec gdfa_fv =
{
 entity_var, /* entity; */
 ONES, /* top_value; */
 ONES, /* entry_info; */
 ONES, /* exit_info; */
 BACKWARD, /* traversal_order;*/
 INTERSECTION, /* confluence; */

 entity_mod, /* gen_effect; */
 up_exp, /* gen_exposition;*/
 entity_use, /* kill_effect; */
 any_where, /* kill_exposition; */
 global_only, /* preserved_dfi; */
 stop_flow_along_edge,
 identity_backward_edge_flow
 stop_flow_along_node,
 backward_gen_kill_node_flow,
 READ_X, /* constgen_statement_type */
 X_NOT_IN_OPERAND,
 /* constgen_precondition */
 USE_X, /* constkill_statement_type*/
 IGNORE_PRECONDITION,
 /* constkill_precondition */
 IGNORE_ENTITY_DEPENDENCE,
 /* dependent_gen */
 X_NOT_IN_GLOBAL_DATA_FLOW_VALUE
 /* dependent_kill */

};

E. Specifying Possibly Uninitialized Variable Analysis

The constant and dependent parts of Gen and Kill for the
variable analysis are:

The above definitions are specified as follows:

struct gimple_pfbv_dfa_spec gdfa_puv =
{
 entity_var, /* entity; */
 ZEROS, /* top_value; */
 ONES, /* entry_info; */
 ZEROS, /* exit_info; */
 FORWARD, /* traversal_order; */
 UNION, /* confluence; */
 entity_mod, /* gen_effect; */
 up_exp, /* gen_exposition */
 entity_mod, /* kill_effect; */
 any_where, /* kill_exposition */
 global_only, /* preserved_dfi; */
 identity_forward_edge_flow,
 stop_flow_along_edge,
 forward_gen_kill_node_flow,
 stop_flow_along_node,
 IGNORE_STATEMENT_TYPE,
 /* constgen_statement_type */
 IGNORE_PRECONDITION,

 /* constgen_precondition */
 READ_X, /* constkill_statement_type*/
 OPERAND_IS_CONST,
 /* constkill_precondition */
 OPER_IN_GLOBAL_DATA_FLOW_VALUE,

 /* dependent_gen */
 OPER_NOT_IN_GLOBAL_DATA_FLOW_VALUE
 /* dependent_kill */
};

F. Impact Chains

The definition of Dep Gen and Dep Kill depicts the
transistive effect between the entities. From the definition of
Dep Gen the impact chain of variables is created, called Gen
Impact Chain. Similarly, the Kill Impact Chain is created from
the definition of Dep Kill. Also the chain are displayed using
dot tool of graphViz software.

G. Results

Now for a given test case gdfa performs the faint variable
and possibly uninitialized variable analysis and dump it in the
file *.gdfa_fv and *.gdfa_puv respectively.
Also the current implementation generate
gen_impact_chain.dot and kill_impact_chain.dot (in case any
such impact chain forms during the analysis) so that Dot tool
of graphViz software can generate impact chains in graphical
format.

Fig. 3 An example Impact Chain for Possibly Uninitiazed
variable analysis. The interpretation is as follows: “c impacts a
through statement b = b-c”. It is called gen-impact chain
because the impact is for generation of uninitialized variables,
i.e. unintialized nature of c makes b uninitialized through
statement b=a-c.

V. CONCLUSIONS

In this project we extended the architecture of gdfa to
non-separable framework so as to support analyses like faint
variable and possibly uninitialized variable analysis.

REFERENCES

[1] Uday P.Khedker, Amitabha Sanyal, Bageshri Karkare, “Data Flow
Analysis Theory And Practise”.

