
Mitigating Impact of Heterogeneity Across Power-constrained Nodes on Parallel

Applications through Load Balancing

Sandeep Dasgupta

sdasgup3@illinois.edu

Karthik R. Gooli

gooli2@illinois.edu

Osman Sarood

osmansarood@gmail.com

Akhil Langer

alanger@illinois.edu

Abstract—Different processors across the nodes have differ-
ent execution times for the same work-loads. This performance
imbalance is more prominent when the CPU power is capped
to low values. This performance imbalance causes increased
execution times of the parallel applications. We propose a load
balancer using Charm++ parallel programming framework
which minimizes the performance imbalance at the lower
power caps by addressing this heterogeneity.

Keywords-Energy minimization; Power capping; Load bal-
ancing; Charm++; Cluster Computing

I. INTRODUCTION

Today with the growing needs of power, one of the goals

of the HPC community is to build larger systems given a

strict power budget. The goal is not only to build larger

systems but also to optimize the systems’ performance under

the power budget constraints. It is noted that running systems

at their TDP 1 is a huge wastage since most of the times

they are consuming lesser power than their TDP. Intel’s

Running Average Power Limit[1] toolkit is a feature that

helps to constrain the power of its compute cores and DRAM

and thereby enabling software controlled, optimized power

allocation to the compute nodes based on the application

running on them. It is noted that under a strict power

budget and under certain circumstances, running applications

with lower power limits on more number of nodes can be

more efficient than running the same application with higher

power on fewer nodes [8].

The motivation for this paper is drawn from the future

guidelines of the work by Osman et al.[8] and [2]. It has

been empirically observed that under the same power cap,

different nodes yield different application performance. This

can be due to several design factors: difference in chip

designs, different in component assembly by the machine

vendor, location of the node in the data center, difference

in component design such as fans, etc. This difference in

the design causes load imbalance across nodes despite same

allocated power and equal compute load. Moreover we are

going to experimentally show that this heterogeneity across

the nodes is more prominent at lower power caps. Our

1The thermal design power (TDP), sometimes called thermal design
point, refers to the maximum amount of heat generated by the CPU,
which the cooling system in a computer is required to dissipate in typical
operation.

goal is to minimize the load imbalance in the presence

of such heterogeneity among the nodes using the over-

decomposition and dynamic object migration features of

Charm++[5].

Our work is a two-fold approach. Firstly we study the

extent of heterogeneity under the lower power caps and

based on this study we design and implement a power-aware

load-balancer which amortizes this heterogeneity.

The rest of the paper is organized as follows. Section II

talks about the applications and testbed that we used to

explore the heterogeneity at lower power caps. Section III

describes the design and implementation of our power aware

load balancer. Section IV discusses the performance of the

power aware load balancer. Finally the Section V points out

the conclusion and the future work.

II. HETEROGENEITY STUDY

A. Heterogeneity metric

Our first contribution is to show that at lower power

capping values, different nodes show prominent differences

in their runtime performance. In this work, we use Intel’s

power gov library[3] that in turn uses RAPL [1] to cap

power of memory and package2 subsystems.

We define heterogeneity at a given power cap in terms

of idle waiting times of the cores at that power cap. We

defined the idle waiting time of a core at a given power

cap in the following two ways:

At a given power cap, let ti, 1 ≤ i ≤ C be the overall

execution time of the core i for a particular application and

T be the total execution time of the application.

Average idle waiting time, Iav

Iav =

P∑

i=0

(max
1≤j≤C

(tj)− ti)

C
(1)

Max idle waiting time, Im

Im = max
1≤j≤C

(tj)− min
1≤i≤C

(ti) (2)

2Package corresponds to the processor chip that hosts processing cores,
caches and memory controller

25 30 35 40 45 50 55 60
0

2

4

6

8

10

12

Power Cap Values (W)

A
v
er

ag
e

Id
le

T
im

e
(s

ec
s)

Without LB

25 30 35 40 45 50 55 60

10

15

20

25

30

Power Cap Values (W)

M
ax

Id
le

T
im

e
(s

ec
s)

Without LB

Figure 1: Behavior of idle waiting (both average and max)

times at lower power caps

Figure 1 shows that at lower power caps the idle waiting

times (Equations (1) and (2)) are having higher values as

compared to those at higher power caps.

B. Testbed

Our Testbed is a 60-node Dell PowerEdge R620 cluster

installed at the Department of Computer Science, University

of Illinois at Urbana-Champaign. Each node is an Intel Xeon

E5-2620 Sandy-bridge server with 6 physical cores @ 2GHz,

2-way SMT with 16GB of DRAM. The Intel Sandy Bridge

processor family supports on board power measurement and

capping through the Running Average Power Limit (RAPL)

interface [1]. The Sandy Bridge architecture has four power

planes: Package (PKG), Power Plane 0 (PP0), Power Plane

1 (PP1) and DRAM. RAPL is implemented using a series of

Machine Specifics Registers (MSRs) which can be accessed

to get power readings for each power plane. RAPL supports

power capping PKG, PP0 and DRAM power planes by

writing into the relevant MSRs. The package power3 for

our Testbed can be capped in the range 23W to 95W (73

integer power levels) while the memory power can be capped

between 8W to 35W (28 integer power levels). The average

base power per node for our cluster was 38 watts. The base

power was measured using the in-built power meters on the

Power Distribution Unit (PDU) that powers our cluster.

In our experiments we will NOT be capping the memory

power as our work is focused on studying the heterogeneity

that comes up at lower CPU power. The effect of lower

memory power on heterogeneity is not discussed.

C. Application used

We used an application, namely, Jacobi2D from the

Charm++ test repository. We have manually instrumented

this application so that we get the precise timing measure-

ments.

• Jacobi2D: A 5-point stencil memory-bound appli-

cation that computes the transmission of heat over a

discretized 2D grid. The global 2D grid is divided into

smaller blocks that are processed in parallel. It is an

iterative application where all processors synchronize

3Package corresponds to the processor chip that hosts processing cores,
caches and memory controller

at the end of each iteration. As is the case in a stencil

computation, each grid point is the average of the

neighboring 5 points. For example, the new value for

element X (i.e. X’) is the current value of X plus

the current values of its left, right, top, and bottom

neighbors.

T

L X R

B

X’ = (X + L + R + T + B) / 5.0

Neighboring blocks communicate the ghost layers with

each other so that averaging computations are done

for all cells inside each block. This application is

implemented in Charm++ using a 2D chare array.

D. Charm++ & Load Balancing

For this research, we used Charm++ programming

paradigm which supports dynamic object migration to im-

prove performance of a parallel application[6]. It relies

on techniques such as processor virtualization and over-

decomposition (having more work units than the number

of cores) to improve performance via adaptive overlap of

computation and communication and data-driven execution.

Charm++ gives the freedom to the programmer to define

program into multiple grain size objects which can be

migrated across the cores. The programmer need not make

the application core aware. This multiple objects defined by

the programmer is moved around during program execution

by adaptive runtime system not only for load balancing

purposes but also for communication optimization and fault

tolerance. Load balancer keeps the statistics of all the

migratable objects for effective load balancing act[4]. The

runtime system provides load balancing strategies that can

account for different application characteristics. Application

programmers can provide their own implementation of load

balancers based on the characteristics of the application and

the ecosystem under which it is run.

E. Observations

The following observations are made on the execution

times of Jacobi2D application run on 10 cluster nodes (

of the aforementioned cluster) under different power caps

ranging from 23W to 60W. For this particular experiment

we have not turned on any load balancer.

Figure2(a) shows how the execution times varied under

different power caps. As we can see, execution time of the

application increases as we move from higher power to lower

power caps. We see an exponential increase of execution

time as we move to the lower power values. This is partly

due to reduction in frequency as the power power level goes

down and hence increased execution times. But we also have

heterogeneity factor contributing to the increased execution

times which will be discussed in the further sections.

25 30 35 40 45 50 55 60

10

15

20

25

30

Power Cap Values (W)

T
o

ta
l

E
x
ec

u
ti

o
n

T
im

e
(s

ec
s)

Without LB

25 30 35 40 45 50 55 60

10

15

20

25

30

Power Cap Values (W)

M
ax

Id
le

T
im

e
(s

ec
s)

Without LB

(a) (b)

25 30 35 40 45 50 55 60
0

2

4

6

8

10

12

Power Cap Values (W)

A
v
er

ag
e

Id
le

T
im

e
(s

ec
s)

Without LB

0 10 20 30 40 50 60

10

20

30

Core Ids

T
o

ta
l

E
x
ec

u
ti

o
n

T
im

e
(s

ec
s)

Without LB

(c) (d)

Figure 2: Experiment to highlight the heterogeneity involved among the nodes when Jacobi2D application is run on 10

cluster nodes with different power caps ranging from 23W to 60W. (a) Total Execution Time vs Power (b) Max Idle Time

vs Power (c) Average Idle Time vs Power (d) Heterogeneity at Power cap of 23W

Figure2(b) shows how Max Idle Time metric varies under

different power values. As we can see under lower power

regions the max idle times increases exponentially. This

means the difference in execution times vary a lot under

lower power regions. This suggests that there is a big margin

between the processors which finish its load quickly and the

processor which finished the last. In the next part lets see

how average idle times varies under lower power capping

regions. This metric gives a better understanding of how the

idle time varies across the nodes and not just the difference

between the best and the worst performer unlike this graph.

Figure 2(c) how Average Idle Time metric varies under

different power values. As we can see the average idle time

varies exponentially under lower power capping regions.

This shows that most or all processors exhibit different

execution times and there by having different idle times and

hence we see increased average idle times under lower power

regions. This further establishes the fact that heterogeneity

is present across the nodes and not just only with few nodes.

Next we will show the extent of heterogeneity among the

processors.

Figure 2(d) shows how the execution time has varied

across the processors at 23W. As we see we have huge

difference in execution times among the processors. The

difference in these execution times as we have seen is best

captured by max idle time and average idle time graphs. The

execution time of the processors within a node is more or

less a constant. The execution times vary only among the

PEs across the nodes. This shows that heterogeneity holds

good across the nodes and not within the same node.

III. DESIGN OF POWER AWARE LOAD BALANCER

Our second contribution is to minimize the above hetero-

geneity using the Charm++ load balancing strategies. We

first observed the working of existing load balancers like

RefineLB & GreedyLB to understand their efficiency under

lower power caps.

A. Existing Load-balancers

Load balancing is a technique of distributing computa-

tional and communication load evenly across processors of

a parallel machine so that no single processor is overloaded.

Charm++ implements a generic, measurement-based load

balancing framework which automatically instruments all

Charm++ objects, collects computation load and communi-

cation structure during execution and stores them into a load

balancing database. Charm++ then provides a collection of

load balancing strategies whose job is to decide on a new

mapping of objects to processors based on the information

from the database. These strategies work under the assump-

tion that objects in a Charm++ application tend to exhibit

temporal correlation in their computation and communica-

tion patterns, i.e. future can be predicted to some extent

using the collected data, allowing effective measurement-

based load balancing without application-specific knowl-

edge. Following are the two widely used load balancing

strategies:

1) RefineLB: The objective of this strategy is to move

objects away from the most overloaded processors to less

overloaded ones so as to reach an average load on each

processors. Algorithm 1 shows the pseudo-code for this

strategy:

Data: Vt:(the set of objects; Vp (the set of processors)

Result: Map:Vt → Vp (An object mapping)

// build a heap of heavily loaded processors and a set

of lightly loaded ones;

ProcessorHeap heavyProcs(Vp);

Set lightProcs(Vp);

while !done do

donor = heavyProcessors→deleteMax();

while ligthProcs do

(obj, lightProc) ← BestObjFromDonor(donor);

if obj.load + lightProc.load > avg load then

continue;

end

if obj obtained then

break;

end

deAssign(obj, donor);

assign(obj, lightProc);

end

end
Algorithm 1: RefineLB Pseudocode

As evident from the above algorithm that it tries to migrate

objects based on a global average which is computed as

the average of each processor’s load. As a result it restricts

the number of migrations which is otherwise possible. At

lower power cap the opportunity for objects migration will

be more due to increased heterogeneity. But this strategy

being dependent on a global metric which may stay nearly

the same as we go towards the lower power region.

2) GreedyLB: This uses a greedy algorithm that always

assigns the heaviest object (load-wise) to the least loaded

processor.

The assumption for object migration is that the time taken

Data: Vt:(the set of chare objects;

Vp (the set of processors;

Gp (the background load of processors) // due to

non-migratable objects, etc.)

Result: Map:Vt → Vp (An object mapping)

// Build a max heap of Vt ;

MaxHeap objHeap(|Vt|);
objHeap←Vt ;

// Build min heap of Gp;

MinHeap cpuHeap(|Vp|);
cpuHeap←Gp;

for i←1 to |objHeap| do

o← objHeap.deleteMax();

donor←cpuHeap.deleteMin();

Assign c to donor and record it in Map;

donor.load += c.load // add object load of c to the

donor;

cpuHeap.insert(donor) ;

end
Algorithm 2: GreedyLB Pseudocode

by the object to execute on a processor will remain the same

both before and after the migration. This assumption is valid

at higher power caps because (1) all the objects are of same

size and (2) at higher power capping values the processors

are running at nearly the same frequencies and hence the

time taken by a chare to run any of them is nearly equal.

But these assumptions fall apart at lower power caps because

of the heterogeneity introduced between the processors and

as a result it may so happen that the object time would be

significantly different after the migration. Algorithm 2 shows

the corresponding pseudo-code.

B. Design: Power Aware Load Balancer

We have established the fact that current load-balancers in

charm++ are not power aware. Current Load Balancers do

not load balance based on the individual performance of the

processor at lower power caps. We have also established that

there is a definite scope for improvement in execution time

of the application by minimizing the maximum idle and the

average idle times of the processor. Our motive behind the

design was to make all the processors finish the execution at

the same point of time. This approach takes relative speeds

of the processors into consideration for balancing the load.

We use the object time of the chares , which is defined as

the time taken by the chare to run on a particular processor,

to measure the relative speeds of the processors. We explain

in the next section, the reason to choose object time for

the load balancing. In this approach we try to average out

the execution time by assigning the load in such a way

that each of them is assigned exactly that much amount of

load which helps all the PEs finish at almost the same time.

The following two equations explains our load distribution

strategy.

(w1x1) = (w2x2) = (w3x3) = · · · = (wnxn) (3)

x1 + x2 + x3 + · · ·+ xn = N (4)

where, wi, 1 ≤ i ≤ n is the weight (in terms of times)

for executing xi number of objects on processors PEi and

N is the total number of objects. Before the load balancing

all the xi’s are the same as the Charm++ runtime does an

equal distribution of work on each processor. The challenge

is to choose the parameter wi in such a way that it correctly

reflects the heterogeneity in performance of ith processor at

lower power values and on the other hand remain almost

the same for higher power figures. We have chosen the

metric of object time for this purpose. The next subsection

explains our choice. By using the above equation we get the

proportionality based on which the number of objects need

to be assigned while load balancing. For instance, processor

PE1 could be 2 times faster than PE2 and P3 could be

0.5 times faster than PE2. In which case we will have the

following proportionality: PE1 : PE1 : PE3 = 2 : 1 : 0.5. Now

based on this proportionality each processor is assigned such

a load that everyone can finish their execution at the same

point of time.

We use the both the equations (5) and (4) to determine

xi’s, 1 ≤ i ≤ n, which is the new load for its respective

processors that help finish all of them at almost the same

time. The newly assigned load xi for each of the PEs is

proportional to wi which we strive to reflect the relative

speeds of the processors at a given power cap.

C. Selection of metric “w”

We have considered processor idletime, processor back-

ground time 4 and processor object time 5 as candidates for

our selection.

We measure these values for each processor at a power

cap of 24W. Figures 3 and 4 show the experimental plots.

The metric which has the maximum variance depicts the

heterogeneity in the best possible way. Percentage change

between the maximum and minimum idle time was 0.35,

and the same for background time was 1.41 and that of

processor object time was 4.09 (This was partially due to a

misbehavior of node0:core0 as seen in the Figure 4). Using

the above observation we chose processor’s object time as

a metric for “w” because this shows the maximum variance

at lower power caps.

4Processor background time amounts to the overhead due to non migrat-
able objects on that processor.

5A processor’s object time is defined as the sum of object times of all
the objects executing on that processor.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

Core Ids

T
im

e
(s

ec
s)

Overhead

0 10 20 30 40 50 60
30

32

34

36

38

40

42

Core Ids

T
im

e
(s

ec
s)

Idle Time

(a) (b)

Figure 3: Idle and Overhead time over the cores at 24W

power cap

0 10 20 30 40 50 60

20

30

40

50

Core Ids

T
im

e
(s

ec
s)

Collective Chare Time

Figure 4: Processor object time on each processor at 24W

power cap.

IV. RESULTS

We used the existing Charm++ implementation of Ja-

cobi2D and executed the application at different power caps

ranging from 23 to 60W . Each execution of the Jacobi2D

application (at a particular power cap) is done with the

following parameters:

1) Grid size = 36000× 36000
2) Chare Size(or block size) = 600× 600
3) Number of Iterations = 20

A. Performance Evaluation Of Power Aware Load Balancer

We run Charm++ applications (1) without load balancing

(2) with existing load balancing strategies (like RefineLB

and GreedyLB) and (3) with our Power Aware strategy

and the results are compared based on the the metrics of

heterogeneity, i.e. Equations (1) and (2). Power aware LB

(LB is used as a short form of load balancing) has proved

to be more efficient than other LBs. The main reason is the

frequency awareness our load balancer takes into account

while trying to minimize the load among the processors

whereas RefineLB and GreedyLB are not aware of the

differences in frequency that exists at lower power caps.

Figure 5 shows the execution time of Jacobi2D when run

without any LB, with RefineLB, with GreedyLB and with

25 30 35 40 45 50 55 60
5

10

15

20

25

30

Power Cap Values (W)

T
o

ta
l

E
x
ec

u
ti

o
n

T
im

e
(s

ec
s)

Power Aware LB

Without LB

Refine LB

Greedy LB

Figure 5: Total Execution Time Vs Power Comparison

between LBs

Power-aware LB. Using these execution times speedups are

computed in Table I. A maximum speedup of 1.3× was

seen when compared to GreedyLB. Maximum speedup of

1.2× w.r.t to RefineLB and 1.28× w.r.t without LB. The

total execution time when run without any load balancer at

23W power cap is 34sec. This is somewhat reduced in case

of RefineLB and GreedyLB. But the power aware LB is able

to decrease is to 25sec as shown in figure 5.

Power (W) SWithoutLB SWithRefineLB SWithGreedyLB

27 1.04 1.08 1.08

26 1.10 1.11 1.13

25 1.18 1.18 1.17

24 1.16 1.18 1.19

23 1.28 1.20 1.30

Table I: Speedup, Sx = (Application run time with Power

Aware LB) / (Application run time with LB strategy x)

There is little or no speed up in cases of higher power

caps when using the power aware load balancer. The reason

behind this is the absence of heterogeneity at higher power

caps. The product of object wall time w and the workload x

comes to be almost the same, and so it leaves power aware

LB no scope of further balancing the workload based on

frequency. Load imbalance is observed only at lower power

caps. Hence, there is very little migration that power aware

load balancer does at higher power caps.

Performance of power aware LB is further analyzed with

respect to other LBs in terms of heterogeneity metrics

average idle time (Iav) and max idle time (Im). In Table

II, for a particular load balancing strategy lbx, we have

measured the percentage reduction in Average Idle time,

Rav
xlb and percentage reduction in Max Idle time, Rm as

25 30 35 40 45 50 55 60
0

5

10

15

Power Cap Values (W)

A
v
er

ag
e

Id
le

T
im

e
(s

ec
s)

Power Aware LB

Without LB

Refine LB

Greedy LB

Figure 6: Average Idle Time vs Power Comparison between

LBs

25 30 35 40 45 50 55 60

5

10

15

20

25

30

Power Cap Values (W)

M
ax

Id
le

T
im

e
(s

ec
s)

Power Aware LB

Without LB

Refine LB

Greedy LB

Figure 7: Max Idle Time vs Power Comparison between LBs

follows:

Rav
lbx =

(Iav for Power Aware LB − Iav for lbx)× 100

Iav for lbx

Rm
lbx =

(Im for Power Aware LB − Im for lbx)× 100

Im for lbx
(5)

Its evident that Power aware LB has out performed the other

existing power unaware LBs in terms of average and max

idle times at lower power caps. The average idle time is

reduced using the power aware LB by as high as 60% when

compared to the average idle time of the run without any LB.

If compared with RefineLB and GreedyLB, the reduction is

as high as 54% and 63% respectively. The average idle time

at 23W comes to be 12,10,14 and 5sec for runs without

LB, with Refine, Greedy and power aware LBs respectively

as shown in figure 6.

The reduction in maximum idle time is as high as 25% in

the presence of power aware LB. It is 30sec in the absence

of any load balancer and it comes down to 23sec when run

with power aware LB at a low power cap of 23W as shown in

figure 7. We considered average idle time as a better metric

to measure the performance of our load balancer than the

Power(W) R
av
wolb

R
av
rlb

R
av
glb

R
m
wolb

R
m
rlb

R
m
glb

27 21.16 28.78 39.05 14.87 14.85 -3.76

26 44.58 37.21 46.11 18.27 16.57 1.005

25 60.86 54.16 59.05 22.55 21.61 1.78

24 54.81 48.43 58.77 19.17 20.58 7.79

23 54.48 44.46 63.05 25.63 21.36 17.87

Table II: Value of Rav
lbx and Rm

lbx at different power values

where wolb: Without LB, rlb: With Refine LB, glb: With

Greedy LB.

0 10 20 30 40 50 60

10

20

30

Core Ids

T
o

ta
l

E
x
ec

u
ti

o
n

T
im

e
(s

ec
s)

With Power Aware LB

With Refine LB

Without LB

Figure 8: Heterogeneity comparison between LBs at 23W

max idle time since it is taking average of the idle times.

Misbehavior by one node does not pull the average down

unlike the max idle time metric.

Power aware LB performs equally well in cases of higher

power caps when there is little or no heterogeneity among

the nodes.

Another observation of the total execution time is done

on a per core basis at 23W. Figure8 depicts the amount

of heterogeneity among the nodes. Further from the same

figure we can note that there is a lot of difference in the

total execution times by each node in the absence of any

load balancer. The total execution time ranges from 15-

35 sec for the run without any load balancer. RefineLB

does not help in minimizing the heterogeneity by a large

extent. The range of total execution times remains close

to 15-30 sec. The power aware load balancer proves to

redistribute the workload in a better manner compared to

existing Load Balancers. As depicted in figure 8 the range

of total execution time has decreased to 15-25 sec with most

of the nodes closing to the average. The range could be

further reduced by making use of node specific information

or hard coding based on performance profiling of individual

nodes. This profiling information is not incorporated as they

make the load balancer usable only for specific applications

running on known clusters.

V. CONCLUSIONS & FUTURE WORK

We observed that the execution time increases with de-

crease in CPU power, but the rate at which it increases was

seen to be different with some nodes performing better than

others, leading to performance heterogeneity. This leads to

some nodes exhibiting higher performance than others, and

thus such nodes tend to have higher idle-times waiting for

other slower ones to complete their iteration, before the

next iteration could be started. Heterogeneity is measured

in terms of average idle times of the nodes in the cluster.

This heterogeneity becomes significant when the power is

pulled down to the allowed minimum. This load imbalance

leads to more wait times among the nodes and thus there is

scope to minimize the imbalance by having a power aware

load balancer that gathers information of the initial few

iterations and then based on the collected information about

the frequency and workload of different nodes, tries to bring

down the idle times.

To help mitigate this performance imbalance, we devel-

oped a power-aware load balancer that helps in minimizing

the heterogeneity. Our load balancer performed better than

the existing power-unaware load balancers in the Charm++

framework. It helped reduced the existing amount of het-

erogeneity and achieve a maximum speed up of 1.3x with

respect to other load balancers when used with Jacobi2D

application.

The current limitation with this load balancer is that it

does not take into account the size of the workload on a

particular node. This limits its usage in the applications

where the object size varies with time. One such applications

that we studied for heterogeneity at lower power regions was

LeanMD[7], where there is particle migration happening as

the application executes leading to different object sizes at

different times.

Our future work aims at making our power-aware load

balancer aware of the changing size of the workload, and

thus incorporating this parameter while balancing the work-

load among the various nodes. This work also involves

periodic invocation of the load balancer in order to keep the

idle times minimized. This has to be done carefully, keeping

the overall load balancing workload to the minimum.

ACKNOWLEDGMENT

We would like to thank Prof. Josep Torrellas for helping us

procure the resources required to establish the TestBed. We

would also like to thank Prof. Tarek Abdelzaher for giving

us the permission for using the physical machines which

had the capability of power capping. This project would not

have been possible otherwise.

REFERENCES

[1] Intel, Intel-64 and IA-32 Architectures Software Developers
Manual , Volume 3A and 3B: System Programming Guide,
2011..

[2] Osman Sarood, PhD Thesis 2013, Optimizing Performance
Under Thermal and Power Constraints for HPC Data Centers.

[3] Intel, Intel Power Governor. http://software.intel.com/en-us/
articles/intel-power-governor.

[4] R. K. BRUNNER AND L. V. KALÉ, Handling application-
induced load imbalance using parallel objects, in Parallel and
Distributed Computing for Symbolic and Irregular Applica-
tions, World Scientific Publishing, 2000, pp. 167–181.

[5] L. KALE, The Chare Kernel parallel programming language
and system, in Proceedings of the International Conference on
Parallel Processing, vol. II, Aug. 1990, pp. 17–25.

[6] L. V. KALE AND S. KRISHNAN, Charm++: A portable con-
current object oriented system based on c++, in Proceedings
of the Eighth Annual Conference on Object-oriented Program-
ming Systems, Languages, and Applications, OOPSLA ’93,
New York, NY, USA, 1993, ACM, pp. 91–108.

[7] V. MEHTA, LeanMD: A Charm++ framework for high per-
formance molecular dynamics simulation on large parallel
machines, Master’s thesis, University of Illinois at Urbana-
Champaign, 2004.

[8] O. SAROOD, A. LANGER, L. V. KALE, B. ROUNTREE,
AND B. DE SUPINSKI, Optimizing power allocation to cpu
and memory subsystems in overprovisioned hpc systems, in
Proceedings of IEEE Cluster 2013, Indianapolis, IN, USA,
September 2013.

