Precise Shape Analysis using Field Sensitivity

*
Sandeep Dasgupta
Intel Technology India Pvt. Ltd.

sandeep.dasgupta@intel.com

ABSTRACT

Programs in high level languages make intensive use of loeapt
port dynamic data structures. Analyzing these programsines)
precise reasoning about the heap structures. Shape anafesis
to the class of techniques that statically approximate tinetime
structures created on the heap. In this paper, we presenteh no
field sensitive shape analysis technique to identify theataf the
heap structures. The novelty of our approach lies in the wayse
field information to remember the paths that result in a paldir
shape (Tree, DAG, Cycle). We associate the field informatiith

a shape in two ways: (a) through boolean functions that capie
shape transition due to change in a particular field, anch¢o)Ligh
matrices that store the field sensitive path information ragmavo
pointer variables. This allows us to easily identify traiosis from
Cycle to DAG, from Cycle to Tree and from DAG to Tree, thus
making the shape more precise.

Categories and Subject Descriptors

F.2.0 JAnalysis of Algorithms and Problem Complexity]: Gen-
eral; D.3.4 Programming Language$: Processors -Sompilers
D.2.4 [Software Engineering: Software/Program Verification—
Formal methodsE.1 [Data]: Data Structures-Graphs and net-
works, treesF.3.1 Logics and Meanings of Program§ Specify-
ing and Verifying and Reasoning about Prograntsgics of pro-
grams; F.3.2 Logics and Meanings of Program$ Semantics of
Programming LanguagesProgram Analysis

General Terms
Algorithms, Languages, Verification, Theory

Keywords

Shape analysis, dataflow analysis, pointer analysiscstatlysis,
heap analysis

*This work was done when the first author was at lIT Kanpur.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SAC’'12March 25-29, 2012, Riva del Garda, Italy.

Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

Amey Karkare
Dept of CSE, IIT Kanpur

karkare@cse.iitk.ac.in

1. INTRODUCTION

Shape analysis is the term for the class of static analysis te
nigues that are used to infer useful properties about he@padhal
the programs manipulating the heap. The shape informafien o
data structure accessible from a heap directed pointer earséd
for disambiguating heap accesses originating from thaitpoi This
is useful for variety of applications, for e.g. compile timgtimiza-
tions, compile-time garbage collection, debugging, veaifon, in-
struction scheduling and parallelization.

In the last two decades, several shape analysis technigwes h
been proposed in literature. However, there is a trade«tffiéen
speed and precision for these techniques. Precise shalysiana
algorithms [14, 16, 6, 10] are not practical as they do notesca
to the size of complex heap manipulating programs. To aehiev
scalability, the practical shape analysis algorithms [21.3] trade
precision for speed.

In this paper, we present a shape analysis technique that use
limited field sensitivity to infer the shape of the heap. Tlogeity
of our approach lies in the way we use field information to neme
ber the paths that result in a particular shape (Tree, DAG]|&}y
This allows us to identify transitions from a conservatihase to
a more precise shape (i.e., from Cycle to DAG, from Cycle ®eTr
and from DAG to Tree) due to destructive updates. This in turn
enables us to infer precise shape information.

The field sensitivity information is captured in two ways:) (a
we use field based boolean variables to remember the diraet co
nections between two pointer variables, and (b) we compete fi
sensitive matrices that store the approximate path infoomde-
tween two pointer variable. We generate boolean functibeaeh
program point that use the above field sensitive informatidnfer
the shape of the pointer variables.

We discuss some of the prior works on shape analysis in Sect. 2
A motivating example is used in Sect. 3 to explain the inbuiti
behind our analysis. The analysis is formalized in Sect.at th
describes the notations used and in Sect. 5 that gives the-ana
sis rules. Some properties of our analysis are describeddn 6.
Section 7 concludes the presentation and gives directarfatiure
work.

2. RELATED WORK

The shape-analysis problem was initially studied in thetexin
of functional languages. Jones and Muchnick [11] proposediod
the earliest shape analysis technique for Lisp-like laggaawith
destructive updates of structure. They used sets of finipesh
graphs at each program point to describe the heap struclure.
keep the shape graphs finite, they introduced the concept of
limited graphs where all nodes beyokdlistance from root of the
graph are summarized into a single node. Hence the anabsis r

sulted in conservative approximations. The analysis iprexttical
as it is extremely costly both in time and space. Chase ef]al.
introduced the concept of limited reference count to chadsap
objects into different shapes. They also classified the sidde

niques [15], the re-materialization is approximate and neaylt in
loss of precision.

Our method is based on data flow analysis that uses matrices
and boolean functions as data flow values. We use field sensiti

concrete and summary nodes, where summary nodes were used tmatrices to store path information, and boolean varialdesdord

guarantee termination. Using the reference count and eteress
information of the node, they were able to kill relatioss¢ng up-
date9 for assignments of the forom— f = qin some cases. How-
ever, this information is not insufficient to compute precshape,
and detects false cycle even in case of simple algorithnesdé¢
structive list reversal.

Sagiv et. al. [14, 15] proposed generic, unbiased shapeg-anal
sis algorithms based ofhree-Valuedogic. They introduce the
concepts ofbstractionandre-materialization Abstraction is the
process of summarizing multiple nodes into one and is used to
keep the information bounded. Re-materialization is trecess
of obtaining concrete nodes from summary node and is redjuire
to handle destructive updates. By identifying suitabledjmates
to track, the analysis can be made very precise. However, the
technique has potentially exponential run-time in the nemmdf
predicates, and therefore not suitable for large progr&rissefano
et. al. [6] presented a shape analysis technique for liregarstruc-
tures (linked-list etc.), which works on symbolic executiof the
whole program using separation logic. Their technique wank
suitable abstract domain, and guarantees terminationeciing
symbolic heaps to finite canonical forms, resulting in a fipeéht.

By using enhanced abstraction scheme and predicate |dggirC
et. al. [4] extended this analysis to support nonlinear datac-
ture (tree, graph etc.). The abstraction is complex whidhmake
verification of serious program expensive. On the other haed
propose a simpler abstraction that can be implemented licoea
pilers.

Berdine et. al. [1] proposed a method for identifying compos
ite data structures using generic higher-order inductieglipates
and parameterized spatial predicates. However, usingpafagon
logic does not perform well in inference of heap properttéack-
ett and Rugina in [10] presented a new approach for shapgsismal
which reasons about the state of a single heap location @mdep
dently. This results in precise abstractions of localizedipns of
heap. This local reasoning is then used to reason aboutlgieap
using context-sensitive interprocedural analysis. Qhesgt al. [3]
use the local abstraction scheme of [10] to generate locafiamts
to accurately compute shape information for complex datacst
tures. Jump and McKinley [12] give a technique for dynamiapsh
analysis that characterizes the shape of recursive daizt\gte in
terms of dynamic degree metrics which uses in-degrees and ou
degrees of heap nodes to categorize them into classes. Wisile
technique is useful for detecting certain types of errdraiis to
visualize and understand the shape of heap structure ambtcan
express the sharing information in general.

Our work is closest to the work proposed by Ghiya et. al. [7]
and by Marron et. al. [13]. Ghiya et. al. [7] keeps interfa@n
and direction matrices between any two pointer variabléatpo
ing to heap object and infer the shape of the structure as, Tree
DAG or Cycle. They have demonstrated the practical apjpdinat
of their analysis [8, 9] and shown that it works well on preati
programs. The main shortcoming of this approach is thatrit ca
not handle kill information. In particular, the approachuisable
to identify transitions from Cycle to DAG, from Cycle to Treed
from DAG to Tree, and hence conservatively identify the sisap
Marron et. al. [13] presents a data flow framework that usep he
graphs to model data flow values. The analysis uses techsinuie
ilar to re-materialization, but unlike parametric shapalgsis tech-

field updates. By incorporating field sensitivity inforntatj we are
able to improve the precision without much impact on efficien
The next section presents a simplified view of our approaétrée
we explain it in full details.

3. AMOTIVATING EXAMPLE

Following the literature [7, 14, 13], we define the shapelatte
for a pointerp as:

Cycle Ifacycle can be reached from
Dag Else if a DAG can be reached from
Tree Otherwise

p.shape=

where the heap is visualized as a directed graph, and cydIpAG

have there natural graph-theoretic meanings. For eaclepwiari-
able, our analysis computes the shape attribute of the ttatdige
pointed to by the variable. We use the code fragment in Fa. ti)
motivate the need for a field sensitive shape analysis.

EXAMPLE 1. Consider the code segment in the Fig. 1(a)SAt
a DAG is created that is reachable from p. 3%, a cycle is created
that is reachable from both p and g. This cycle is destroyduhat
S6 and the DAG is destroyed &F.

Field insensitive shape analysis algorithms use consimevill
information and hence they are, in general, unable to infe t
shape transition from cycle to DAG or from DAG to Tree. For ex-
ample, the algorithm by Ghiya et. al. [7] can correctly reptine
shape transition from DAG to cycle (86), but fails to infer the
shape transition from cycle to DAG (86) and from DAG tadTr ee
(at S7). This is evident from Fig. 1(b) that shows the Direction
(D) and Interference (1) matrices computed using their ailtyon.
We get conservative shape informationSétand S7 because the
kill-effect of statementS6 and S7 are not taken into account for
computing D and 1. 0

We now show how we have incorporated limited field sensitivit
at each program point in our shape analysis. The details of ou
analysis will be presented later (Sect. 5).

ExXAMPLE 2. The statement &4 creates a new DAG structure
reachable from p, because there are two paths{f and p—

h) reaching g. Any field sensitive shape analysis algorithustm
remember all paths from p to q. Our analysis approximates any
path between two variables by the first field that is derefezdn

on the path. Further, as there may be an unbounded number of
paths between two variables, we use k-limiting to approténtiae
number of paths starting at a given field.

Our analysis remembers the path information using the ¥ollo
ing: (a) Dr: Modified direction matrix that stores the first fields
of the paths between two pointers; (). IModified interference
matrix that stores the pairs of first fields correspondinghte pairs
of interfering paths, and (c) Boolean Variables that rementhe
fields directly connecting two pointer variables.

Figures 1(c) and 1(d) show the values computed by our arglysi
for the example program. In this case, the fact that the shafpe
the variable p becomes DAG aft4 is captured by the following

After D | After Dr I
Stmt Stmt
P q P q P q p q
S1 pl1 O]p|l O S1 p | {e} 0 p [{(e 0
Sl. p = mlloc(); q|0 0fql0 O q |0 0 q |0 0
S2. q = malloc(); P_q p_q p q p q
3. pof = q; S2 p[1 Ofp[l O 2 [p [{e 0 p | {(ee)} 0
4. p—h =gq; g|0 1|q|0 1 q |0 {e} q |0 {(e,e)}
S5 g—g = p; P q P q p q p a
S6. g—g = NULL; S3 p{1 1]pfl 1 3 |p | {e {f} p | {(ee)} {(f.e)}
§7. p—h = NAL glo 1]qf1 1 q |0 {g} g | {E&nH} {(£.8)}
(a) A code fragment P q P q p q p q
4 p é 1 p 1 1 4 p ;)s} }f},h} p % . }Ef,e))j(h,e)}
q q q € q £&
After 1 fpg | Mpg | Gap P al [p q P q D q
Stmt s [P[TL[p[T 1] |ss [[{efhr (AP (o) {(F.e),(he). &)
st false | false | false gl 1fqf1 1 a | {9 g |a |{EhEh@e (&)
S2 false | false | false P 4 P q D 3] q
S3 true | false | false S6 pl1 1]p|l 1 s6 [p | {e} {f,h} p | {(e8)} {(f.¢),(he)}
4 true | true | false gl1l 1fgf1 1 q |0 {e} q [{&h)Eh} {(e8)}
S5 true | true | true P q b q p q p q
S6 true | true | false s7 pl1 1I|p|1T 1 s7 p | {e} {f} p [{(ee)} {(f,e)}
S7 true | false | false g1 1fqf1 1 q |0 {e} q | {(s D)} {(e,8)}

(d) Boolean Variables
and their values

(b) Direction D) and
Interference 1)
matrices [7]

Figure 1:

boolean functions:

(hpg A (JIE[p,][> 1))V
True.

Prag (qu/\(|||:[p7q”>l))7

Ppg

Where kg is a boolean variable that is true if h field of p points
to g, fpq is a boolean variable that is true if f field of p points to
a, I is field sensitive interference matrikg[p,]| is the count of
number of interfering paths between p and g.

The functions simply say that variable p reaches a DAG be-
cause there are more than one pathis [p,q]| > 1) from p to g.

It also keeps track of the pathsygfand hyq in this case). Later, at
statemen§7, the path due to fy is broken, causinglr[p,q]| = 1.
This causes g, to become false. Note that va® notevaluate
the boolean functions immediately, but associate the uunated
functions with the statements. When we want to find out theesha
at a given statement, only then we evaluate the functiorgubia

Dr and | matrices, and the values of boolean variables at that
statement.

Our analysis uses another attributgcle to capture the cycles
reachable from a variable. For our example program, assugntire
absence of cycles befo8s, the simplified functions for detecting
cycle on p aftefss are:

Gap/ (IDF[P,q > 1),
True.

pC\/cI e
Yap

Here, the functions captures the fact that cycle on p consist
field g from g to p (gp) and some path from p to ¢ [p,q]| > 1).
This cycle is broken either when the path from p to q is broken
(IDe[p,q]| = 0) or when the link g changes {g= False). The
latter occurs afteiS6 in Fig. 1(a). 0

We now formalize the intuitions presented in the examplezabo

4. DEFINITIONS AND NOTATIONS

(c) Field Sensitive Direction Og)
and Interferencel ¢) matrices.

A motivating example

edges represent the connectivity through pointer fieldstoRally,
inside a node we show all the relevant pointer variables ¢hat
point to the heap object corresponding to that node. Thesedge
are labeled by the name of the corresponding pointer fieldhifn
paper, we only label nodes and edges that are relevant taghe d
cussion, to avoid clutter.

Let #(denotes the set of all heap directed pointers at a particular
program point andF denotes the set of all pointer fields at that
program point. Given two heap-directed pointprs| € #, a path
from ptoqis the sequence of pointer fields that need to be traversed
in the heap to reach frompto . The length of a path is defined as
the number of pointer fields in the path. As the path lengtiveen
two heap objects may be unbounded, we keep track of only 8ie fir
field of a patl To distinguish between a path of length one (direct
path) from a path of length greater than one (indirect pduf) start
at the same field, we use the supersciifior a direct path andl
for an indirect path. In pictures, we use solid edges foralipaths,
and dotted edges for indirect paths.

It is also possible to have multiple paths between two point-
ers starting at a given field, with at most one direct pathil.
However, the number of indirect pattis may be unbounded. As
there can only be a finite number of first fields, we store firidgie
of paths, including the count for the indirect paths, betwago
pointer variables in a set. To bound the size of the set, weaput
limit k on number of repetitions of a particular field. If the number
goes beyond, we treat the number of paths with that fieldeas

ExampPLE 3. Figure 2(a) shows a code fragment and Fig. 2(b)
shows a possible heap graph at a program point after 86e In
any execution, there is one path between p and q, startirgfield
f, whose length is statically unknown. This informatiort@sed by
our analysis as the s¢tf'1}. Further, there are unbounded number
of paths between p and s, all starting with field f. There ip @s
direct path from p to s using field g, and 3 paths starting withdfth
between p and s. Assuming the limitI3, this information can be

We view the heap structure at a program point as a directed 2The decision to use only first field is guided by the fact that in

graph, the nodes of which represent the allocated objectsren

1The functions and values shown in this example and in Fig. 1(c
are simplified to avoid references to concepts not defined yet

our language, a statement can use at most one fieldp+d. =

. or...= p—f. Using prefixes of a fixed lengtls 1 increases
the preC|5|on of the analysis at the cost of increased coitple
However, it does not make any fundamental change to the sinaly

SL. g =p;

S2. while(...) {
S3. g—g = s
A q = g—f;
5.}

(a) A code fragment

g 9
@O

(b) A possible heap graph for code in (ajliddges are the direct paths,

dotted edges are the indirect paths.

Figure 2: Paths in a heap graph

represented by the ség, ' h'3}. On the other hand, if k- 3,
then the set would big®, ' h'=}. 0

For brevity, we usef* for the cases when we do not want to
distinguish between direct or indirect path starting atfits field
f. We now define the field sensitive matrices used by our arslysi

DEFINITION 1. Field sensitive Direction matrix Pis a matrix
that stores information about paths between two pointeraides.
Given pge #H,f € F:

€ €Dg[p,p] wheree denotes the empty path.
f® eDg[p.q ifthereis a direct path f from p to g.
f'™ eDg[p,q if there are m indirect paths starting with
field f from p to g and m< k.
f'° cDg[p,q if there are m indirect paths starting with

field f from pto qand m- k.

Let A denote the set of natural numbers. We define the follow-
ing partial order for approximate paths used by our analysar
feFf, mneAN,n<m
fDEfD7]clmgflm7 flmgf|°°7

eCe, finc fim,

The partial order is extended to set of paghs Sp, as’:

LS & YVoeS,PeS,stal P

For pair of paths{a,B) C (a/,f') & (a Ca’)A(BC B/), and for
set of pairs of pathBp,, Rp,: Rp, C Rp, & V(a,B) € Rp,, 3(a/,B) €
Re, st.(a,B) C (o,).

Two pointersp,q € A are said to interfere if there exisis H
such that bottp andqg have paths reachirg Note thats could be
p (or g) itself, in which case the path from(from q) is €.

DEFINITION 2. Field sensitive Interference matrix between
two pointers captures the ways in which these pointers desfier-
ing. For p.g,s€ #, p # q, the following relation holds for p and
IE:

Dr[p,s xDfrla,s C Ir[pq

Our analysis computes over-approximations for the matilge
andlg at each program point. While it is possible to compute only
Dr and use above equation to complitecomputing both explic-
itly results in better approximations fd¢. Note that interference
relation is symmetric, i.e.,

(o,B) € Ir[p,q] & (B,a) € Ix[g, pl

While describing the analysis, we use the above relatiomtovs
the computation of only one of the two entries.

3Note that for our analysis, for a given fiefdthese sets contain at
most one entry of typé® and at most one entry of typié

Table 1: Determining shape from boolean attributes

Poyel e Prag p.shape
True | Don't Care| Cycle
False True DAG
False False Tree

ExamMPLE 4. Figure 3 shows a heap graph and the correspond-
ing field sensitive matrices as computed by our analysis. [

As mentioned earlier, for each varialpe= 7/, our analysis uses
attributespp,, and py. . to store boolean functions telling whether
p can reach a DAG or cycle respectively in the heap. The boolean
functions consist of the values from matrideg, I, and the field
connectivity information. Fof € ¥, p,q € #, field connectivity is
captured by boolean variables of the fofigy, which is true when
f field of p points directly tog. The shape of, p.shape, can be
obtained by evaluating the functions for the attribupgg . and
Prg, and using Table 1.

We use the following operations in our analysis. Sefenote the
set of approximate paths between two nodRedenote a set of pair
of paths, ank € A’ denotes the limit on maximum indirect paths
stored for a given field. Then,

e Projection: Forf € ¥, Sef extracts the paths starting at field
f.

Sef =sn{fP, 11 .. 'k =y

e Counting: The count on the number of paths is defined as :

lef = 1

1P = 1

1] = o

1] = jforjen

IS = |al
u%s

e Path removal, intersection and union over set of approxmat
paths : For singleton sets of patfts} and{(3}, path removal
({a} & {B}). intersection {a} N {B}) and union{a} U {B})
operations are defined as given in Table 2. These definitions
are extended to set of paths in a natural way [5].

e Multiplication by a scala¥): Leti, j € A/,i <k, j <k. Then,
for a patha, the multiplication by a scaldr i xa is defined
in Table 2(d). The operation is extended to set of paths as:

i=0

. 0
xS = {{im|ae$} i € AU (e}

I p q S r
P {e.e} {(fP.e), | {(fihe). | {(f%9)
(B5519). | (fhe, | (Fhe}
(f38 MY | (1))
q | (D) {e.€} {(f2,9), file),
(ff?’f%i)’ (31 12)} | (fihe)
(fa f50)}
Dr| p q S r
s | {E&fh, | {E&]), eg} | (2.9}
_ p | {e} {le} {fil= fél} {f12= fél} (g, fﬁ-)} (12, fil)} °
fa a | 0| {egf | {fP} |{fi"fH (10, 111y}
s|0] 0 (e} {ig} r] e 5112» {(, %1)., () | {ee}
r 0 0 0 {e} (e, 13} | (&)}
(a) Heap graph (b) Direction Matrix (c) Interference Matrix
Figure 3: A heap graph and its field sensitive path matrices
Table 2: Path operations
(a) Path removal (b) Intersection
5 {B] {& {f°y ("} ({f™} Anyother N {BY] {g& {f°} {f"} {f™} Anyother
{a} path({v}) {a} path({v})
{e} 0 {e} {e} {e} {e} {e} € 0 0 0 0
{f°} {f°} 0 {2} {f%} {f°} {f°} 0 {f% 0 0 0
('} {f"} o {fm 0 {f} ('} 0 0 {fny {1 0
("} ("} 0 {f'*} ('} {f'} ("} 0 0 (fy ("™ 0
(c) Union
U {B} {e} {fP} (f {fT=} Any other
{a} path({y})
{e} {e} {e. 1} {e, {1} {e, £} {e,vt
{f°} {f.¢} {f°} {0, 1!} {fP, 1=} {f°v}
{f"} {f'e} {f"", P} {f"} {f'°} {f'".v}
{f'y {f'".e} {f'=, P} {f'=} {f'} {f'.v}
o o o i+ ifi+j<k
i,j €N, m:max(lfJ,O),n:min(L,J)andt:{ Lo“ IOtIr:;:wSise .
(d) Multiplication by a scalar
* 3 D f1l fTe
i
, [%] ifi*] <k ©
: & f fim, m= { LY Otherwise f
0 3 fleo fleo fleo

5. OUR ANALYSIS

Our intent is to determine, at each program point, the fiehdise
tive matricesDg andlg, and the boolean variables capturing field
connectivity. We formulate the problem as an instance oféod
data flow analysis, where the data flow values are the mativgs
the boolean variables as mentioned above. For simpliciycon-
struct basic blocks containing a single statement eaclorBefre-
senting the equations for data flow analysis, we define thézon
ence operator (merge) for various data flow values as usediby o
analysis. Using the superscriptandy to denote the values coming
along two paths,

mergé g, fq

) foqV e f € Fopae H
merge Pl e, Peie)

)

)

Pore V Pyes PE H

Phag V Plags P € H

Dr whereDg[p,q] =

D¥ [p.q]UDY[p.q],Vp,.q € H
I wherelg[p,q] =
I¥[p,qUI¥[p,d,Vp.qe H

Merge P, Py
mergéDF, DY

mergdl%, 1)

The transformation of data flow values due to a statersigatcap-
tured by the following set of equations:

D2Up.q) = (DI[p.q oD [p,q)) UDZp,q
1®%p.q = (1[p.g) 1K [p,q))uIZ®Tp.q)
pOut = (pll. A-pK) v 35T
P2 = (APl v "

Field connectivity information is updated directly by thatement.

5.1 Analysis of Basic Statements

We now present the basic statements that can access or modify
the heap structures, and our analysis of each kind of statsme

1. p = malloc(): After this statemenp points to a newly al-
located object. Thus,

pil, = plll pkill — gin
ngg = False pggen: False

Vse H, s#p,

DKl [p,s =DiM[p.§
DK (s p] = DI'[s. p
DKW p, p) = DI [p.
1K .5 = 11N (.
11 [, p) = 11N[p, p)
p
p.
pcl§|c|||e = po/cle
pgSQ = False
Vse H,
DKl [, = DIN[p,|
DF"[s.p] = D' [s.p)
1Kl [p,g = 11" [p.s]

.p =0 p=&g-f),

en
D2y

p,g =
D2®Ms,p =
D2, pl = {e}

|'9en[ps] =
12°%p, p) = {e.e}

= NULL: This statement only kills the existing relations of

oKy = Pl

p?j“ = False

D2 p,g =
DZ"s, pl =
125N p,g =0

p = q op n:Inouranalysis we con-

sider these three pointer assignment statements as eaival
After these statementq is assumed to point to the same

heap object as pointed loy

plo(/lcllle = p(,ycle
en
pdee =l [a/p)

kill

pDag - pDag
en
p9e"= 7 [a/p)

whereX|[q/p] creates a copy ok with all occurrences of

replaced byp.

Vse H,s#pVfeF
fps: fos
DK [p.g = D[p.s
DK (s p] = DI[s.)
DK [p, p = DIM[p, p]
1K [p,g = 11N,
1 [, p =11 [p, p

fsp= fsq

p2®"p.s = D[, 5
D2 p = DN[s.q]
p2*Vp, p = DIM[a,q
19%p.9 = 11",
120, pl = 1"[q,q]

. p—f = nul | : This statement breaks the existing lihlem-
anating fromp, thus killing relations ofy, that are due to link
f. The statement does not generate new relations.

kill

kill

Poele = False Py = False
Poe. = False p2e_ False
Va,s€ H,s# p,
fpqg = False
DKl ip. = DMpgof DXllsqg =0
Ko = (@B (@B elMpsa=1}
i¥lay ~ oifarp Kl p b= 0

5. p—f = q: This statement first breaks the existing lihland

then re-links the the heap object pointed tofbio the heap
object pointed to byg. The kill effects are exactly same as
described in the case pf>f = nul | . We only describe the
generated relationships here:

en I

P50 = (foandl o)V (foa/ (IDE[a, pll > 1))
P = fgA(llE[p.ql| > 1)

gen
e = fogA(IDE[D, Pl > 1)

q[%gen = False

qu == Tl’ue

en

de = ((IDF[SP}|>1)Aquchyc|e)

V ((IDr (s, pll = 1) A fpg A (IDF g, pI| > 1))
V ((IDr[s,dll = 1) A fpg A (IDF g, Pl = 1)),
Vse H,s# p,s#q
s = (IDe[s Pl > 1) A fgA (lIE[s.o] > 1),
Vse H,s# p,S#£q

The relations generated f@r andlg are as follows. For
r,se H:

D2y = |DIM[q,8|«DI"[rpl, s#p, 1 ¢ {p.q}

D2®Nr.pl = |DIM(q, pll*DIrpl. r #p

DZp.r] = DIM[g.r)l« (DI [p.ple (e} U{')),

r#q

p2Mp.g = {f°} U (IDI(a.q — {e}|*{'"}) U
(IDIM[q,c] [+ (DP[p. pl & {e})

DZ®Mg.q = 1«DP[g.p

D¥Ma.r] = [DI[a.r]/«DI"(a,pl, 1 & {p.q}

1#p.d = {(f°.€)} (=D [p.ple fe}) x {e})

12 = @+OP[p.ple fe}) x

Bl @B cPlar)
U{fP}x (B (e.B) € 1F'[ar]}
U{f (B (a,B) €1 ar) o # e},

. r¢{p,a}
#sd = (1+Dfs) x {e}, ¢ {p.}
12%sr) = (1xDP s p)) x {B| (a,B) € Mg, 1]},

sZ{p.at, rZ{p.a}, s#r

. p = g—f: The relations killed by the statement are same

as that in case g = NULL. The relations created by this
statement are heavily approximated by our analysis. After
this statemenp points to the heap object which is accessi-
ble from pointerq through f link. The only inference we
can draw is thap is reachable from any pointersuch that

r reachesg — f before the assignment. This information
is available becausg'[g,r] will have an entry of the form
(D, a) for somea.

As p could potentially point to a cycle(DAG) reachable from
g, we set:

gen _

en
pQ/cI e — q(,\/cl e g

Py = qDag

We record the fact that reaches through the patH. Also,
any object reachable fromusing fieldf is marked as reach-
able fromp through any possible field.

fgp = True

hor = [DINgr]ef|>1 Vhe F vres

The equations to compute the generated relation®foand
I can be divided into three components. We explain each of
the component, and give the equations.

As a side-effect of the statement, any nadhat is reach-
able fromq through fieldf before the statement, becomes
reachable fronp. However, the information available is not
sufficient to determine the path fromto s. Therefore, we
conservatively assume that any path starting fipoan po-
tentially reachs. This is achieved in the analysis by using a
universal path setl for Dg[p,s]. The set is defined as:

{epu U (2,1}

feF

Because it is also not possible to determine if there exist a
path fromp to itself, we safely conclude a self loop gn

in case a cycle is reachable fram(i.e., g.shape evaluates
to Cycl e). These observations result in the following equa-

u

tions:
Dip,d = U VseH,s#pADNgssf#£0
_ U g.shape evaluates @ycle
Dilp.pl = {{s} Otherwise
lilp,p] = UxU

Any nodes (includingq), that has paths tgbefore the state-
ment, will have paths t@ after the statement. However, we
can not know the exact number of pagt® p, and therefore
use upper limit¢) as an approximation:

Dafs.pl = wxDFffsq Vse . s#q
Dala,p = {fP}U(eox(DI[g,qe{e})UU
I2[s, p] Do[s,p] x {e} VseH

The third category of nodes to consider are those that inter-
fere with the node reachable fragqusing direct pattf. Such

a nodes will have paths top after the statement. Also the
nodes that interfere with the node reachable frgprasing
direct or indirect pathf will interfere with p after the state-
ment. Thus, we have:

Dafspl = {af(f°.c) €15}
lls.pl = {a|(f0) elMod}xu
Finally, we compute thé andDr relations as:
D2"rs = Dilr,gUD,[r,gUDslrs Vrse H
12T = nirgulargulslrg VrseH

5.2 Interprocedural Analysis

To handle procedure calls we use simple interprocedurdy-ana
sis that works by creating an invocation graph of the program
handle recursive calls, for which the invocation structigretati-
cally unknown, we use approximate summary for one of the siode
involved in the recursion chain, and use it to break the cyéle
each call site, the two matriceBf andlg) along with the boolean

functions are fed as input to the called procedure, aftgugarmap-
ping between formal and actual arguments. The called ptoead

then analyzed to create the corresponding output matriue$hee

boolean functions. This approach is similar to the work byy@h
et. al. [7].

6. PROPERTIES OF OUR ANALYSIS

We mention some of the properties of our analysis. The detail
have been omitted due to space constraints, and can be fo{B]d i
We also show some of the cases where it performs better tlean th
field insensitive approaches.

6.1 Need for Boolean Variables

Because we compute approximations for field sensitive matri
ces under certain conditions (e.g. for statemeatq — f), these
matrices can result in imprecise shape. Boolean variatdgsus
retain some precision in such cases.

6.2 Termination

The computation oD andlg matrices follows from the fact that
the data flow functions are monotonic and the sets of appr@bem
paths are bounded. The termination of computation of boolea
functions forCycl e andDag can be proved using the associativity
and distributivity of the boolean operators &ndV). The details
of the proof can be found in [5].

6.3 Storage Requirement

The space requirement f@g is O(n? «+m) and that forl is
O(n? 7). The boolean functions at each program point are stored
in an expression tree, the size of which is polynomial in thhaber
of pointer instructions.

6.4 Comparison with a Field Insensitive Ap-
proach

For comparison purpose the test cases must involve shape tra
sitions like Cycle to DAG, Cycle to Tree, and DAG to Tree. The
transition like Tree to DAG, DAG to Cycle, or Tree to Cycle are
not of much importance as these can be detected by any of tthe fie
insensitive approaches. Following are the cases that meete
quirement and better demonstrate the accuracy of our anays
compared to field insensitive analysis (like Ghiya et. d).[7

(a) Inserting an internal node in a singly linked list: Con-
sider the code fragment Fig. 4(a) that is a simplified version
of insertion of an internal node in a linked list. Field insen
sitive approach like that of Ghiya et. al. [7] cannot detbet t
kill information due to the change of the fiefcbf p atS4 and
findsp to have an additional path tpviar (which is now ac-
tually the only path). So they report the shape attributp of
as DAG.

Consider the following boolean function generated a$ter
using our approach.

(fpa /A (le[pdl[> 1))V (fpr A (lle[pr][> 1))
True fpq = False

Prag

After S4, the condition|Ig [p,r]| > 1 becomeFalseand pp
will get evaluated tdralse and thus correctly detects the
shape attribute gf to tree.
(b) Swapping two nodes of a singly linked list: Consider the
code fragment Fig. 4(b) which swaps the two pointeend
p — f in a singly linked listL with link field as f, given

Field Insensitive Analysig

Field Sensitive Analysig

Tree Tree

Tree Tree

Tree Tree

DAG(atp) Tree

(a) Insertion of an internal node in a singly linked list

Field Insensitive Analysid Field Sensitive Analysig

Tree Tree

Tree Tree

Tree Tree

Cycle (atp, n1, n2) Cycle (atp, n1, n2)

Cycle (atp, n1, n2) Tree

After || Actual Shape|
Sl. pof =q; S1 Tree
S2. r=malloc(); S2 Tree
83 r—f =g S Tree
4. pof =1 S4 Tree
After Actual Shape
S1. nl = p—f; S1 Tree
S2. n2 = nl—f; S2 Tree
S3. t = n2—f; S3 Tree
sS4, n2—f = nl; S4 Cycle (atp, n1, n2)
S5, nlf =t; S5 Tree
S6. p—f =n2; 6 Tree

Cycle (atp, n1, n2) Tree

(b) Swapping two nodes

mrror(tree T) {

of a singly linked list

Sl. L =T->left;

S2. R =T->right; - — = — -
S3. mirror(L); After][Actual Shape] Field Insensitive Analysid Field Sensitive Analysig
S4. nirror(R); S1 Tree Tree Tree

S5, T->left = R S2 Tree Tree Tree

S6. T->right = L; S5 Dag (at T) Dag (at T) Dag (at T)

} S6 Tree Dag (at T) Tree

(c) Computing mirror image of a binary tree.

Figure 4: Examples demonstrating

the pointerp. The table in Fig. 4(b) shows the comparison
between the shape decision given by our approach and the
field insensitive approaches.

(c) Computing mirror image of a binary tree: Consider the
code fragment Fig. 4(c) which creates a mirror image of a
binary tree rooted at. While swapping the left and right
sub-tree a temporary DAG is created (after staten$éint
which gets destroyed after the very next staten®nt As
depicted in Fig. 4(c), this shape transition is also captime
our analysis.

7. CONCLUSION AND FUTURE WORK

In this paper we proposed a field sensitive shape analydis tec
niqgue. We demonstrated how boolean functions along withl fiel
sensitive matrices help in inferring the precise shape efdhta
structure. While field sensitive matrices help in genetatine
kill information for strong updates, boolean functionsgh@i re-
membering the shape transition history with respect to &éaelp-
directed pointer. We have shown some example scenariosahat
be handled more precisely by our analysis as compared toisth ex
ing field insensitive analysis. Our shape analysis can lieadiby
an optimizing compiler to disambiguate memory references.

We use a very simple inter procedural framework to handle-fun
tion calls, that computes safe approximate summaries thrisa
point. Our next challenge is to develop a better inter procad
analysis to handle function calls more precisely. Furtherplan
to extend our shape analysis technique to handle more afdrety
occurring programming patterns to find precise shape faetpat-
terns. We are developing a prototype model using GCC framewo
to show the effectiveness on large benchmarks. Howevemtiik
is still in very early stages, and requires manual inteieant\We
plan to automate the prototype in near future.

8. REFERENCES

[1] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W.
O’hearn, H. Yang, and Q. Mary. Shape analysis for
composite data structures. GAV '07.

[2] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of
pointers and structures. PLDI '90.

the preciseness of our ahgis

[3] S. Cherem and R. Rugina. Maintaining doubly-linked list
invariants in shape analysis with local reasoningy MCAI
'07.

R. Cherini, L. Rearte, and J. Blanco. A shape analysis for
non-linear data structures. 8AS '10

S. Dasgupta. Precise shape analysis using field satsitiv
Technical report, Master’s thesis, IIT Kanpur, 2011.
http://goo. gl / 3U3W.

D. Distefano, P. O'Hearn, and H. Yang. A local shape
analysis based on separation logicTRCAS '06

R. Ghiya and L. J. Hendren. Is it a Tree, a DAG, or a Cyclic
graph? a shape analysis for heap-directed pointers in C. In
POPL '96.

R. Ghiya and L. J. Hendren. Putting pointer analysis tokwo
In POPL '98

R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting parallalis
¢ programs with recursive darta structuresCla '98.

B. Hackett and R. Rugina. Region-based shape analygis w
tracked locations. IPOPL '05

N. D. Jones and S. S. Muchnick. Flow analysis and
optimization of lisp-like structures. IROPL '79.

M. Jump and K. S. McKinley. Dynamic shape analysis via
degree metrics. IISMM '09.

M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegildo
A static heap analysis for shape and connectivity: unified
memory analysis: the base framework LGPC’06.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analys
problems in languages with destructive updating?@PL
'96.

S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logidCM TOPLAS24(3), 2002.

R. Shaham, E. Yahay, E. K. Kolodner, and S. Sagiv.
Establishing local temporal heap safety properties with
applications to compile-time memory managemenSAS
'03.

(4]
(5]

(6]
(7]

(8]
(9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

