
Precise Shape Analysis using Field Sensitivity

Sandeep Dasgupta
∗

Intel Technology India Pvt. Ltd.
sandeep.dasgupta@intel.com

Amey Karkare
Dept of CSE, IIT Kanpur

karkare@cse.iitk.ac.in

ABSTRACT
Programs in high level languages make intensive use of heap to sup-
port dynamic data structures. Analyzing these programs requires
precise reasoning about the heap structures. Shape analysis refers
to the class of techniques that statically approximate the run-time
structures created on the heap. In this paper, we present a novel
field sensitive shape analysis technique to identify the shapes of the
heap structures. The novelty of our approach lies in the way we use
field information to remember the paths that result in a particular
shape (Tree, DAG, Cycle). We associate the field informationwith
a shape in two ways: (a) through boolean functions that capture the
shape transition due to change in a particular field, and (b) through
matrices that store the field sensitive path information among two
pointer variables. This allows us to easily identify transitions from
Cycle to DAG, from Cycle to Tree and from DAG to Tree, thus
making the shape more precise.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complexity]: Gen-
eral; D.3.4 [Programming Languages]: Processors —Compilers;
D.2.4 [Software Engineering]: Software/Program Verification—
Formal methods; E.1 [Data]: Data Structures—Graphs and net-
works, trees; F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs—Logics of pro-
grams; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program Analysis

General Terms
Algorithms, Languages, Verification, Theory

Keywords
Shape analysis, dataflow analysis, pointer analysis, static analysis,
heap analysis

∗This work was done when the first author was at IIT Kanpur.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

1. INTRODUCTION
Shape analysis is the term for the class of static analysis tech-

niques that are used to infer useful properties about heap data and
the programs manipulating the heap. The shape information of a
data structure accessible from a heap directed pointer can be used
for disambiguating heap accesses originating from that pointer. This
is useful for variety of applications, for e.g. compile timeoptimiza-
tions, compile-time garbage collection, debugging, verification, in-
struction scheduling and parallelization.

In the last two decades, several shape analysis techniques have
been proposed in literature. However, there is a trade-off between
speed and precision for these techniques. Precise shape analysis
algorithms [14, 16, 6, 10] are not practical as they do not scale
to the size of complex heap manipulating programs. To achieve
scalability, the practical shape analysis algorithms [2, 7, 13] trade
precision for speed.

In this paper, we present a shape analysis technique that uses
limited field sensitivity to infer the shape of the heap. The novelty
of our approach lies in the way we use field information to remem-
ber the paths that result in a particular shape (Tree, DAG, Cycle).
This allows us to identify transitions from a conservative shape to
a more precise shape (i.e., from Cycle to DAG, from Cycle to Tree
and from DAG to Tree) due to destructive updates. This in turn
enables us to infer precise shape information.

The field sensitivity information is captured in two ways: (a)
we use field based boolean variables to remember the direct con-
nections between two pointer variables, and (b) we compute field
sensitive matrices that store the approximate path information be-
tween two pointer variable. We generate boolean functions at each
program point that use the above field sensitive informationto infer
the shape of the pointer variables.

We discuss some of the prior works on shape analysis in Sect. 2.
A motivating example is used in Sect. 3 to explain the intuition
behind our analysis. The analysis is formalized in Sect. 4 that
describes the notations used and in Sect. 5 that gives the analy-
sis rules. Some properties of our analysis are described in Sect. 6.
Section 7 concludes the presentation and gives directions for future
work.

2. RELATED WORK
The shape-analysis problem was initially studied in the context

of functional languages. Jones and Muchnick [11] proposed one of
the earliest shape analysis technique for Lisp-like languages with
destructive updates of structure. They used sets of finite shape
graphs at each program point to describe the heap structure.To
keep the shape graphs finite, they introduced the concept ofk-
limited graphs where all nodes beyondk distance from root of the
graph are summarized into a single node. Hence the analysis re-

sulted in conservative approximations. The analysis is notpractical
as it is extremely costly both in time and space. Chase et. al.[2]
introduced the concept of limited reference count to classify heap
objects into different shapes. They also classified the nodes in
concrete and summary nodes, where summary nodes were used to
guarantee termination. Using the reference count and concreteness
information of the node, they were able to kill relations (strong up-
dates) for assignments of the formp→ f = q in some cases. How-
ever, this information is not insufficient to compute precise shape,
and detects false cycle even in case of simple algorithms like de-
structive list reversal.

Sagiv et. al. [14, 15] proposed generic, unbiased shape analy-
sis algorithms based onThree-Valuedlogic. They introduce the
concepts ofabstractionandre-materialization. Abstraction is the
process of summarizing multiple nodes into one and is used to
keep the information bounded. Re-materialization is the process
of obtaining concrete nodes from summary node and is required
to handle destructive updates. By identifying suitable predicates
to track, the analysis can be made very precise. However, the
technique has potentially exponential run-time in the number of
predicates, and therefore not suitable for large programs.Distefano
et. al. [6] presented a shape analysis technique for linear data struc-
tures (linked-list etc.), which works on symbolic execution of the
whole program using separation logic. Their technique works on
suitable abstract domain, and guarantees termination by converting
symbolic heaps to finite canonical forms, resulting in a fixed-point.
By using enhanced abstraction scheme and predicate logic, Cherini
et. al. [4] extended this analysis to support nonlinear datastruc-
ture (tree, graph etc.). The abstraction is complex which will make
verification of serious program expensive. On the other handwe
propose a simpler abstraction that can be implemented in real com-
pilers.

Berdine et. al. [1] proposed a method for identifying compos-
ite data structures using generic higher-order inductive predicates
and parameterized spatial predicates. However, using of separation
logic does not perform well in inference of heap properties.Hack-
ett and Rugina in [10] presented a new approach for shape analysis
which reasons about the state of a single heap location indepen-
dently. This results in precise abstractions of localized portions of
heap. This local reasoning is then used to reason about global heap
using context-sensitive interprocedural analysis. Cherem et. al. [3]
use the local abstraction scheme of [10] to generate local invariants
to accurately compute shape information for complex data struc-
tures. Jump and McKinley [12] give a technique for dynamic shape
analysis that characterizes the shape of recursive data structure in
terms of dynamic degree metrics which uses in-degrees and out-
degrees of heap nodes to categorize them into classes. Whilethis
technique is useful for detecting certain types of errors; it fails to
visualize and understand the shape of heap structure and cannot
express the sharing information in general.

Our work is closest to the work proposed by Ghiya et. al. [7]
and by Marron et. al. [13]. Ghiya et. al. [7] keeps interference
and direction matrices between any two pointer variables point-
ing to heap object and infer the shape of the structure as Tree,
DAG or Cycle. They have demonstrated the practical applications
of their analysis [8, 9] and shown that it works well on practical
programs. The main shortcoming of this approach is that it can-
not handle kill information. In particular, the approach isunable
to identify transitions from Cycle to DAG, from Cycle to Treeand
from DAG to Tree, and hence conservatively identify the shapes.
Marron et. al. [13] presents a data flow framework that uses heap
graphs to model data flow values. The analysis uses techniquesim-
ilar to re-materialization, but unlike parametric shape analysis tech-

niques [15], the re-materialization is approximate and mayresult in
loss of precision.

Our method is based on data flow analysis that uses matrices
and boolean functions as data flow values. We use field sensitive
matrices to store path information, and boolean variables to record
field updates. By incorporating field sensitivity information, we are
able to improve the precision without much impact on efficiency.
The next section presents a simplified view of our approach before
we explain it in full details.

3. A MOTIVATING EXAMPLE
Following the literature [7, 14, 13], we define the shape attribute

for a pointerp as:

p.shape=







Cycle If a cycle can be reached fromp
Dag Else if a DAG can be reached fromp

Tree Otherwise

where the heap is visualized as a directed graph, and cycle and DAG
have there natural graph-theoretic meanings. For each pointer vari-
able, our analysis computes the shape attribute of the data structure
pointed to by the variable. We use the code fragment in Fig. 1(a) to
motivate the need for a field sensitive shape analysis.

EXAMPLE 1. Consider the code segment in the Fig. 1(a), AtS4,
a DAG is created that is reachable from p. AtS5, a cycle is created
that is reachable from both p and q. This cycle is destroyed atline
S6 and the DAG is destroyed atS7.

Field insensitive shape analysis algorithms use conservative kill
information and hence they are, in general, unable to infer the
shape transition from cycle to DAG or from DAG to Tree. For ex-
ample, the algorithm by Ghiya et. al. [7] can correctly report the
shape transition from DAG to cycle (atS5), but fails to infer the
shape transition from cycle to DAG (atS6) and from DAG toTree
(at S7). This is evident from Fig. 1(b) that shows the Direction
(D) and Interference (I) matrices computed using their algorithm.
We get conservative shape information atS6 and S7 because the
kill-effect of statementsS6 and S7 are not taken into account for
computing D and I.

We now show how we have incorporated limited field sensitivity
at each program point in our shape analysis. The details of our
analysis will be presented later (Sect. 5).

EXAMPLE 2. The statement atS4 creates a new DAG structure
reachable from p, because there are two paths (p→ f and p→
h) reaching q. Any field sensitive shape analysis algorithm must
remember all paths from p to q. Our analysis approximates any
path between two variables by the first field that is dereferenced
on the path. Further, as there may be an unbounded number of
paths between two variables, we use k-limiting to approximate the
number of paths starting at a given field.

Our analysis remembers the path information using the follow-
ing: (a) DF : Modified direction matrix that stores the first fields
of the paths between two pointers; (b) IF : Modified interference
matrix that stores the pairs of first fields corresponding to the pairs
of interfering paths, and (c) Boolean Variables that remember the
fields directly connecting two pointer variables.

Figures 1(c) and 1(d) show the values computed by our analysis
for the example program. In this case, the fact that the shapeof
the variable p becomes DAG afterS4 is captured by the following

S1. p = malloc();
S2. q = malloc();
S3. p→f = q;
S4. p→h = q;
S5. q→g = p;
S6. q→g = NULL;
S7. p→h = NULL;

(a) A code fragment

After fpq hpq gqp
Stmt
S1 false false false
S2 false false false
S3 true false false
S4 true true false
S5 true true true
S6 true true false
S7 true false false

After D I
Stmt

S1
p q

p 1 0
q 0 0

p q
p 1 0
q 0 0

S2
p q

p 1 0
q 0 1

p q
p 1 0
q 0 1

S3
p q

p 1 1
q 0 1

p q
p 1 1
q 1 1

S4
p q

p 1 1
q 0 1

p q
p 1 1
q 1 1

S5
p q

p 1 1
q 1 1

p q
p 1 1
q 1 1

S6
p q

p 1 1
q 1 1

p q
p 1 1
q 1 1

S7
p q

p 1 1
q 1 1

p q
p 1 1
q 1 1

After DF IF
Stmt

S1
p q

p {ε} /0
q /0 /0

p q
p {(ε,ε)} /0
q /0 /0

S2
p q

p {ε} /0
q /0 {ε}

p q
p {(ε,ε)} /0
q /0 {(ε,ε)}

S3
p q

p {ε} { f }
q /0 {ε}

p q
p {(ε,ε)} {(f ,ε)}
q {(ε, f)} {(ε,ε)}

S4
p q

p {ε} { f ,h}
q /0 {ε}

p q
p {(ε,ε)} {(f ,ε),(h,ε)}
q {(ε, f),(ε,h)} {(ε,ε)}

S5
p q

p {ε, f ,h} { f ,h}
q {g} {ε,g}

p q
p {(ε,ε)} {(f ,ε),(h,ε),(ε,g)}
q {(ε, f),(ε,h),(g,ε)} {(ε,ε)}

S6
p q

p {ε} { f ,h}
q /0 {ε}

p q
p {(ε,ε)} {(f ,ε),(h,ε)}
q {(ε, f),(ε,h)} {(ε,ε)}

S7
p q

p {ε} { f }
q /0 {ε}

p q
p {(ε,ε)} {(f ,ε)}
q {(ε, f)} {(ε,ε)}

(d) Boolean Variables
and their values

(b) Direction (D) and
Interference (I)
matrices [7]

(c) Field Sensitive Direction (DF)
and Interference (IF) matrices.

Figure 1: A motivating example

boolean functions1 :

pDag = (hpq∧ (|IF [p,q]|> 1))∨ (fpq∧ (|IF [p,q]|> 1)),

hpq = True.

Where hpq is a boolean variable that is true if h field of p points
to q, fpq is a boolean variable that is true if f field of p points to
q, IF is field sensitive interference matrix,|IF [p,q]| is the count of
number of interfering paths between p and q.

The functions simply say that variable p reaches a DAG be-
cause there are more than one paths (|IF [p,q]| > 1) from p to q.
It also keeps track of the paths (fpq and hpq in this case). Later, at
statementS7, the path due to hpq is broken, causing|IF [p,q]|= 1.
This causes pDag to become false. Note that wedo not evaluate
the boolean functions immediately, but associate the unevaluated
functions with the statements. When we want to find out the shape
at a given statement, only then we evaluate the function using the
DF and IF matrices, and the values of boolean variables at that
statement.

Our analysis uses another attributeCycle to capture the cycles
reachable from a variable. For our example program, assuming the
absence of cycles beforeS5, the simplified functions for detecting
cycle on p afterS5 are:

pCycle = gqp∧ (|DF [p,q]| ≥ 1),

gqp = True.

Here, the functions captures the fact that cycle on p consists of
field g from q to p (gqp) and some path from p to q (|DF [p,q]| ≥ 1).
This cycle is broken either when the path from p to q is broken
(|DF [p,q]| = 0) or when the link g changes (gqp = False). The
latter occurs afterS6 in Fig. 1(a).

We now formalize the intuitions presented in the example above.

4. DEFINITIONS AND NOTATIONS
We view the heap structure at a program point as a directed

graph, the nodes of which represent the allocated objects and the

1The functions and values shown in this example and in Fig. 1(c)
are simplified to avoid references to concepts not defined yet.

edges represent the connectivity through pointer fields. Pictorially,
inside a node we show all the relevant pointer variables thatcan
point to the heap object corresponding to that node. The edges
are labeled by the name of the corresponding pointer field. Inthis
paper, we only label nodes and edges that are relevant to the dis-
cussion, to avoid clutter.

LetH denotes the set of all heap directed pointers at a particular
program point andF denotes the set of all pointer fields at that
program point. Given two heap-directed pointersp, q ∈ H , a path
from p toq is the sequence of pointer fields that need to be traversed
in the heap to reach fromp to q. The length of a path is defined as
the number of pointer fields in the path. As the path length between
two heap objects may be unbounded, we keep track of only the first
field of a path2 To distinguish between a path of length one (direct
path) from a path of length greater than one (indirect path) that start
at the same field, we use the superscriptD for a direct path andI
for an indirect path. In pictures, we use solid edges for direct paths,
and dotted edges for indirect paths.

It is also possible to have multiple paths between two point-
ers starting at a given fieldf , with at most one direct pathf D.
However, the number of indirect pathsf I may be unbounded. As
there can only be a finite number of first fields, we store first fields
of paths, including the count for the indirect paths, between two
pointer variables in a set. To bound the size of the set, we puta
limit k on number of repetitions of a particular field. If the number
goes beyondk, we treat the number of paths with that field as∞.

EXAMPLE 3. Figure 2(a) shows a code fragment and Fig. 2(b)
shows a possible heap graph at a program point after lineS5. In
any execution, there is one path between p and q, starting with field
f , whose length is statically unknown. This information is stored by
our analysis as the set{ f I1}. Further, there are unbounded number
of paths between p and s, all starting with field f . There is also a
direct path from p to s using field g, and 3 paths starting with field h
between p and s. Assuming the limit k≥ 3, this information can be

2The decision to use only first field is guided by the fact that in
our language, a statement can use at most one field, i.e.p→f =
... or ...= p→f. Using prefixes of a fixed length> 1 increases
the precision of the analysis at the cost of increased complexity.
However, it does not make any fundamental change to the analysis.

S1. q = p;
S2. while(...) {
S3. q→g = s;
S4. q = q→f;
S5. }

p . . . q
f f f f

s

g

h
g g

(a) A code fragment (b) A possible heap graph for code in (a). Solid edges are the direct paths,
dotted edges are the indirect paths.

Figure 2: Paths in a heap graph

represented by the set{gD, f I∞,hI3}. On the other hand, if k< 3,
then the set would be{gD, f I∞,hI∞}.

For brevity, we usef ∗ for the cases when we do not want to
distinguish between direct or indirect path starting at thefirst field
f . We now define the field sensitive matrices used by our analysis.

DEFINITION 1. Field sensitive Direction matrix DF is a matrix
that stores information about paths between two pointer variables.
Given p,q∈ H , f ∈ F :

ε ∈ DF [p, p] whereε denotes the empty path.

f D ∈ DF [p,q] if there is a direct path f from p to q.

f Im ∈ DF [p,q] if there are m indirect paths starting with
field f from p to q and m≤ k.

f I∞ ∈ DF [p,q] if there are m indirect paths starting with
field f from p to q and m> k.

Let N denote the set of natural numbers. We define the follow-
ing partial order for approximate paths used by our analysis. For
f ∈ F , m,n∈N , n≤ m:

ε ⊑ ε, f D ⊑ f D, f I∞ ⊑ f I∞, f Im ⊑ f I∞, f In ⊑ f Im.

The partial order is extended to set of pathsSP1,SP2 as3:

SP1 ⊑ SP2 ⇔ ∀α ∈ SP1,∃β ∈ SP2 s.t.α ⊑ β

For pair of paths:(α,β) ⊑ (α′,β′)⇔ (α ⊑ α′)∧ (β ⊑ β′), and for
set of pairs of pathsRP1,RP2: RP1 ⊑RP2 ⇔∀(α,β)∈RP1,∃(α′,β′)∈
RP2 s.t.(α,β)⊑ (α′,β′).

Two pointersp,q∈ H are said to interfere if there existss∈ H
such that bothp andq have paths reachings. Note thats could be
p (or q) itself, in which case the path fromp (from q) is ε.

DEFINITION 2. Field sensitive Interference matrix IF between
two pointers captures the ways in which these pointers are interfer-
ing. For p,q,s∈H , p 6= q, the following relation holds for DF and
IF :

DF [p,s]×DF [q,s] ⊑ IF [p,q]

Our analysis computes over-approximations for the matricesDF
andIF at each program point. While it is possible to compute only
DF and use above equation to computeIF , computing both explic-
itly results in better approximations forIF . Note that interference
relation is symmetric, i.e.,

(α,β) ∈ IF [p,q]⇔ (β,α) ∈ IF [q, p]

While describing the analysis, we use the above relation to show
the computation of only one of the two entries.
3Note that for our analysis, for a given fieldf , these sets contain at
most one entry of typef D and at most one entry of typef I

Table 1: Determining shape from boolean attributes
pCycle pDag p.shape
True Don’t Care Cycle
False True DAG
False False Tree

EXAMPLE 4. Figure 3 shows a heap graph and the correspond-
ing field sensitive matrices as computed by our analysis.

As mentioned earlier, for each variablep∈H , our analysis uses
attributespDag andpCycle to store boolean functions telling whether
p can reach a DAG or cycle respectively in the heap. The boolean
functions consist of the values from matricesDF , IF , and the field
connectivity information. Forf ∈F , p,q∈H , field connectivity is
captured by boolean variables of the formfpq, which is true when
f field of p points directly toq. The shape ofp, p.shape, can be
obtained by evaluating the functions for the attributespCycle and
pDag, and using Table 1.

We use the following operations in our analysis. LetSdenote the
set of approximate paths between two nodes,P denote a set of pair
of paths, andk ∈ N denotes the limit on maximum indirect paths
stored for a given field. Then,

• Projection: Forf ∈ F , S⊲f extracts the paths starting at field
f .

S⊲f ≡ S∩{ f D, f I1, . . . , f Ik, f I∞}

• Counting: The count on the number of paths is defined as :

|ε| = 1

| f D| = 1

| f I∞| = ∞
| f I j | = j for j ∈N

|S| = ∑
α∈S

|α|

• Path removal, intersection and union over set of approximate
paths : For singleton sets of paths{α} and{β}, path removal
({α}⊖{β}), intersection ({α}∩{β}) and union({α}∪{β})
operations are defined as given in Table 2. These definitions
are extended to set of paths in a natural way [5].

• Multiplication by a scalar(⋆): Let i, j ∈N , i ≤ k, j ≤ k. Then,
for a pathα, the multiplication by a scalari, i ⋆α is defined
in Table 2(d). The operation is extended to set of paths as:

i ⋆S =

{

/0 i = 0
{i ⋆α | α ∈ S} i ∈N ∪{∞}

q

p

r

s

f1

f3

f5

f2

f4

DF p q s r

p {ε} { f D
1 } { f I1

1 , f I1
2 } { f I2

1 , f I1
2 }

q /0 {ε} { f D
3 } { f I1

3 , f I1
4 }

s /0 /0 {ε} { f D
5 }

r /0 /0 /0 {ε}

IF p q s r

p {ε,ε} {(f D
1 ,ε), {(f I1

1 ,ε), {(f I2
1 ,ε),

(f I1
2 , f D

3), (f I1
2 ,ε), (f I1

2 ,ε)}
(f I1

2 , f I1
4)} (f I1

1 , f D
5)}

q {(ε, f D
1), {ε,ε} {(f D

3 ,ε), {(f I1
3 ,ε),

(f D
3 , f I1

2), (f I1
4 , f D

5)} (f I1
4 ,ε)}

(f I1
4 , f I1

2)}

s {(ε, f I1
1), {(ε, f D

3), {ε,ε} {(f D
5 ,ε)}

(ε, f I1
2)} (f D

5 , f I1
4)}

(f D
5 , f I1

1)}

r {(ε, f I2
1), {(ε, f I1

3), {(ε, f D
5)} {ε,ε}

(ε, f I1
2)} (ε, f I1

4)}

(a) Heap graph (b) Direction Matrix (c) Interference Matrix

Figure 3: A heap graph and its field sensitive path matrices

Table 2: Path operations
(a) Path removal (b) Intersection

⊖ {β} {ε} { f D} { f I j } { f I∞} Any other
{α} path({γ})
{ε} /0 {ε} {ε} {ε} {ε}
{ f D} { f D} /0 { f D} { f D} { f D}

{ f Ii } { f Ii } /0 { f Im} /0 { f Ii }

{ f I∞} { f I∞} /0 { f I∞} { f I∞} { f I∞}

∩ {β} {ε} { f D} { f I j } { f I∞} Any other
{α} path({γ})
{ε} ε /0 /0 /0 /0
{ f D} /0 { f D} /0 /0 /0
{ f Ii } /0 /0 { f In} { f Ii } /0
{ f I∞} /0 /0 { f I j } { f I∞} /0

(c) Union
∪ {β} {ε} { f D} { f I j } { f I∞} Any other
{α} path({γ})
{ε} {ε} {ε, f D} {ε, f I j } {ε, f I∞} {ε,γ}
{ f D} { f D,ε} { f D} { f D, f I j } { f D, f I∞} { f D,γ}
{ f Ii } { f Ii ,ε} { f Ii , f D} { f It} { f I∞} { f Ii ,γ}
{ f I∞} { f I∞,ε} { f I∞, f D} { f I∞} { f I∞} { f I∞,γ}

i, j ∈N , m= max(i− j ,0), n= min(i, j) andt =

{

i+ j if i+ j ≤ k
∞ Otherwise

.

(d) Multiplication by a scalar
⋆ α ε f D f I j f I∞

i

i ε f Ii f Im, m=

{

i ∗ j if i ∗ j ≤ k
∞ Otherwise

f I∞

∞ ε f I∞ f I∞ f I∞

5. OUR ANALYSIS
Our intent is to determine, at each program point, the field sensi-

tive matricesDF andIF , and the boolean variables capturing field
connectivity. We formulate the problem as an instance of forward
data flow analysis, where the data flow values are the matricesand
the boolean variables as mentioned above. For simplicity, we con-
struct basic blocks containing a single statement each. Before pre-
senting the equations for data flow analysis, we define the conflu-
ence operator (merge) for various data flow values as used by our
analysis. Using the superscriptsx andy to denote the values coming
along two paths,

merge(f x
pq, f y

pq) = f x
pq∨ f y

pq, f ∈ F , p,q∈H

merge(px
Cycle, p

y
Cycle) = px

Cycle ∨ py
Cycle, p∈ H

merge(px
Dag, p

y
Dag) = px

Dag∨ py
Dag, p∈H

merge(Dx
F ,D

y
F) = DF whereDF [p,q] =

Dx
F [p,q]∪Dy

F [p,q],∀p,q∈H

merge(Ix
F , I

y
F) = IF whereIF [p,q] =

Ix
F [p,q]∪ Iy

F [p,q],∀p,q∈H

The transformation of data flow values due to a statementst is cap-
tured by the following set of equations:

Dout
F [p,q] = (Din

F [p,q]⊖Dkill
F [p,q])∪D

gen
F [p,q]

Iout
F [p,q] = (I inF [p,q]⊖ Ikill

F [p,q])∪ I
gen
F [p,q]

pout
Cycle = (pin

Cycle ∧¬pkill
Cycle)∨ pgen

Cycle

pout
Dag = (pin

Dag∧¬pkill
Dag)∨ p

gen
Dag

Field connectivity information is updated directly by the statement.

5.1 Analysis of Basic Statements
We now present the basic statements that can access or modify

the heap structures, and our analysis of each kind of statements.

1. p = malloc(): After this statementp points to a newly al-
located object. Thus,

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

p
gen
Cycle = False p

gen
Dag = False

∀s∈ H , s 6= p,

Dkill
F [p,s] = Din

F [p,s] Dgen
F [p,s] = /0

Dkill
F [s, p] = Din

F [s, p] D
gen
F [s, p] = /0

Dkill
F [p, p] = Din

F [p, p] D
gen
F [p, p] = {ε}

Ikill
F [p,s] = I inF [p,s] Igen

F [p,s] = /0

Ikill
F [p, p] = I inF [p, p] Igen

F [p, p] = {ε,ε}

2. p = NULL: This statement only kills the existing relations of
p.

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

pgen
Cycle = False pgen

Dag = False

∀s∈ H ,

Dkill
F [p,s] = Din

F [p,s] D
gen
F [p,s] = /0

Dkill
F [s, p] = Din

F [s, p] D
gen
F [s, p] = /0

Ikill
F [p,s] = I inF [p,s] Igen

F [p,s] = /0

3. p = q, p = &(q→f), p = q op n: In our analysis we con-
sider these three pointer assignment statements as equivalent.
After these statements,p is assumed to point to the same
heap object as pointed byq.

pkill
Cycle = pin

Cycle pkill
Dag = pin

Dag

p
gen
Cycle = qin

Cycle[q/p] p
gen
Dag = qin

Dag[q/p]

whereX[q/p] creates a copy ofX with all occurrences ofq
replaced byp.

∀s∈ H ,s 6= p,∀ f ∈ F

fps= fqs fsp= fsq

Dkill
F [p,s] = Din

F [p,s] Dgen
F [p,s] = Din

F [q,s]

Dkill
F [s, p] = Din

F [s, p] D
gen
F [s, p] = Din

F [s,q]

Dkill
F [p, p] = Din

F [p, p] D
gen
F [p, p] = Din

F [q,q]

Ikill
F [p,s] = I inF [p,s] Igen

F [p,s] = I inF [q,s]

Ikill
F [p, p] = I inF [p, p] Igen

F [p, p] = I inF [q,q]

4. p→f = null: This statement breaks the existing linkf em-
anating fromp, thus killing relations ofp, that are due to link
f . The statement does not generate new relations.

pkill
Cycle = False, pkill

Dag = False

p
gen
Cycle = False, p

gen
Dag = False

∀q,s∈H ,s 6= p,

fpq = False

Dkill
F [p,q] = Din

F [p,q]⊲f Dkill
F [s,q] = /0

Ikill
F [p,s] = {(α,β) | (α,β) ∈ I inF [p,s], α ≡ f ∗}

Ikill
F [q,s] = /0 if q 6= p Ikill

F [p, p] = /0

5. p→f = q: This statement first breaks the existing linkf and
then re-links the the heap object pointed to byp to the heap
object pointed to byq. The kill effects are exactly same as
described in the case ofp→f = null. We only describe the
generated relationships here:

pgen
Cycle = (fpq∧qin

Cycle)∨ (fpq∧ (|DF [q, p]| ≥ 1))

p
gen
Dag = fpq∧ (|IF [p,q]|> 1)

qgen
Cycle = fpq∧ (|DF [q, p]| ≥ 1)

q
gen
Dag = False

fpq = True

sgen
Cycle = ((|DF [s, p]| ≥ 1)∧ fpq∧qin

Cycle)

∨ ((|DF [s, p]| ≥ 1)∧ fpq∧ (|DF [q, p]| ≥ 1))

∨ ((|DF [s,q]| ≥ 1)∧ fpq∧ (|DF [q, p]| ≥ 1)),

∀s∈H ,s 6= p,s 6= q

sgen
Dag = (|DF [s, p]| ≥ 1)∧ fpq∧ (|IF [s,q]|> 1),

∀s∈H ,s 6= p,s 6= q

The relations generated forDF and IF are as follows. For
r,s∈H :

Dgen
F [r,s] = |Din

F [q,s]|⋆Din
F [r, p], s 6= p, r 6∈ {p,q}

D
gen
F [r, p] = |Din

F [q, p]|⋆Din
F [r, p], r 6= p

Dgen
F [p, r] = |Din

F [q, r]|⋆ (Din
F [p, p]⊖{ε}∪{ f I1}),

r 6= q

Dgen
F [p,q] = { f D} ∪ (|Din

F [q,q]−{ε}|⋆{ f I1}) ∪

(|Din
F [q,q]|⋆ (Din

F [p, p]⊖{ε}))

D
gen
F [q,q] = 1⋆Din

F [q, p]

Dgen
F [q, r] = |Din

F [q, r]|⋆Din
F [q, p], r 6∈ {p,q}

Igen
F [p,q] = {(f D,ε)}∪ ((1⋆ (Din

F [p, p]⊖{ε}))×{ε})

I
gen
F [p, r] = (1⋆ (Din

F [p, p]⊖{ε}))×

{β | (α,β) ∈ I inF [q, r]}

∪ { f D}×{β | (ε,β) ∈ I inF [q, r]}

∪ { f I1}×{β | (α,β) ∈ I inF [q, r],α 6= ε},
r 6∈ {p,q}

Igen
F [s,q] = (1⋆Din

F [s, p])×{ε}, s 6∈ {p,q}

I
gen
F [s, r] = (1⋆Din

F [s, p])×{β | (α,β) ∈ I inF [q, r]},

s 6∈ {p,q}, r 6∈ {p,q}, s 6= r

6. p = q→f: The relations killed by the statement are same
as that in case ofp = NULL. The relations created by this
statement are heavily approximated by our analysis. After
this statementp points to the heap object which is accessi-
ble from pointerq through f link. The only inference we
can draw is thatp is reachable from any pointerr such that
r reachesq → f before the assignment. This information
is available becauseI inF [q, r] will have an entry of the form
(f D,α) for someα.

As p could potentially point to a cycle(DAG) reachable from
q, we set:

p
gen
Cycle = qin

Cycle p
gen
Dag = qin

Dag

We record the fact thatq reachesp through the pathf . Also,
any object reachable fromq using field f is marked as reach-
able fromp through any possible field.

fqp = True

hpr = |Din
F [q, r]⊲f | ≥ 1 ∀h∈ F ,∀r ∈H

The equations to compute the generated relations forDF and
IF can be divided into three components. We explain each of
the component, and give the equations.

As a side-effect of the statement, any nodes that is reach-
able fromq through field f before the statement, becomes
reachable fromp. However, the information available is not
sufficient to determine the path fromp to s. Therefore, we
conservatively assume that any path starting fromp can po-
tentially reachs. This is achieved in the analysis by using a
universal path setU for DF [p,s]. The setU is defined as:

U = {ε}∪
⋃

f∈F

{ f D, f I∞}

Because it is also not possible to determine if there exist a
path from p to itself, we safely conclude a self loop onp
in case a cycle is reachable fromq (i.e., q.shape evaluates
to Cycle). These observations result in the following equa-
tions:

D1[p,s] = U ∀s∈ H ,s 6= p∧Din
F [q,s]⊲f 6= /0

D1[p, p] =

{

U q.shape evaluates toCycle
{ε} Otherwise

I1[p, p] = U×U

Any nodes (includingq), that has paths toq before the state-
ment, will have paths top after the statement. However, we
can not know the exact number of pathss to p, and therefore
use upper limit (∞) as an approximation:

D2[s, p] = ∞⋆Din
F [s,q] ∀s∈H ,s 6= q

D2[q, p] = { f D}∪ (∞⋆ (Din
F [q,q]⊖{ε}))∪U

I2[s, p] = D2[s, p]×{ε} ∀s∈ H

The third category of nodes to consider are those that inter-
fere with the node reachable fromq using direct pathf . Such
a nodes will have paths top after the statement. Also the
nodes that interfere with the node reachable fromq using
direct or indirect pathf will interfere with p after the state-
ment. Thus, we have:

D3[s, p] = {α | (f D,α) ∈ I inF [q,s]}

I3[s, p] = {α | (f ∗,α) ∈ I inF [q,s]}×U

Finally, we compute theIF andDF relations as:

Dgen
F [r,s] = D1[r,s]∪D2[r,s]∪D3[r,s] ∀r,s∈ H

Igen
F [r,s] = I1[r,s]∪ I2[r,s]∪ I3[r,s] ∀r,s∈ H

5.2 Interprocedural Analysis
To handle procedure calls we use simple interprocedural analy-

sis that works by creating an invocation graph of the program. To
handle recursive calls, for which the invocation structureis stati-
cally unknown, we use approximate summary for one of the nodes
involved in the recursion chain, and use it to break the cycle. At
each call site, the two matrices (DF andIF) along with the boolean

functions are fed as input to the called procedure, after proper map-
ping between formal and actual arguments. The called procedure is
then analyzed to create the corresponding output matrices and the
boolean functions. This approach is similar to the work by Ghiya
et. al. [7].

6. PROPERTIES OF OUR ANALYSIS
We mention some of the properties of our analysis. The details

have been omitted due to space constraints, and can be found in [5].
We also show some of the cases where it performs better than the
field insensitive approaches.

6.1 Need for Boolean Variables
Because we compute approximations for field sensitive matri-

ces under certain conditions (e.g. for statementp= q→ f), these
matrices can result in imprecise shape. Boolean variables help us
retain some precision in such cases.

6.2 Termination
The computation ofDF andIF matrices follows from the fact that

the data flow functions are monotonic and the sets of approximate
paths are bounded. The termination of computation of boolean
functions forCycle andDag can be proved using the associativity
and distributivity of the boolean operators (∧ and∨). The details
of the proof can be found in [5].

6.3 Storage Requirement
The space requirement forDF is O(n2 ∗m) and that forIF is

O(n2∗m2). The boolean functions at each program point are stored
in an expression tree, the size of which is polynomial in the number
of pointer instructions.

6.4 Comparison with a Field Insensitive Ap-
proach

For comparison purpose the test cases must involve shape tran-
sitions like Cycle to DAG, Cycle to Tree, and DAG to Tree. The
transition like Tree to DAG, DAG to Cycle, or Tree to Cycle are
not of much importance as these can be detected by any of the field
insensitive approaches. Following are the cases that meet our re-
quirement and better demonstrate the accuracy of our analysis as
compared to field insensitive analysis (like Ghiya et. al. [7]).

(a) Inserting an internal node in a singly linked list: Con-
sider the code fragment Fig. 4(a) that is a simplified version
of insertion of an internal node in a linked list. Field insen-
sitive approach like that of Ghiya et. al. [7] cannot detect the
kill information due to the change of the fieldf of p atS4 and
findsp to have an additional path toq via r (which is now ac-
tually the only path). So they report the shape attribute ofp
as DAG.

Consider the following boolean function generated afterS4
using our approach.

pDag = (fpq∧ (|IF [pq]|> 1))∨ (fpr ∧ (|IF [pr]|> 1))

fpr = True fpq = False

After S4, the condition|IF [p, r]|> 1 becomeFalseand pDag

will get evaluated toFalse, and thus correctly detects the
shape attribute ofp to tree.

(b) Swapping two nodes of a singly linked list: Consider the
code fragment Fig. 4(b) which swaps the two pointersp and
p → f in a singly linked listL with link field as f , given

S1. p→f = q;
S2. r= malloc();
S3. r→f = q;
S4. p→f = r;

After Actual Shape Field Insensitive Analysis Field Sensitive Analysis

S1 Tree Tree Tree
S2 Tree Tree Tree
S3 Tree Tree Tree
S4 Tree DAG(atp) Tree

(a) Insertion of an internal node in a singly linked list

S1. n1 = p→f;
S2. n2 = n1→f;
S3. t = n2→f;
S4. n2→f = n1;
S5. n1→f = t;
S6. p→f = n2;

After Actual Shape Field Insensitive Analysis Field Sensitive Analysis

S1 Tree Tree Tree
S2 Tree Tree Tree
S3 Tree Tree Tree
S4 Cycle (atp, n1, n2) Cycle (atp, n1, n2) Cycle (atp, n1, n2)
S5 Tree Cycle (atp, n1, n2) Tree
S6 Tree Cycle (atp, n1, n2) Tree

(b) Swapping two nodes of a singly linked list

mirror(tree T) {
S1. L = T->left;
S2. R = T->right;
S3. mirror(L);
S4. mirror(R);
S5. T->left = R;
S6. T->right = L;
}

After Actual Shape Field Insensitive Analysis Field Sensitive Analysis

S1 Tree Tree Tree
S2 Tree Tree Tree
S5 Dag (at T) Dag (at T) Dag (at T)
S6 Tree Dag (at T) Tree

(c) Computing mirror image of a binary tree.

Figure 4: Examples demonstrating the preciseness of our analysis

the pointerp. The table in Fig. 4(b) shows the comparison
between the shape decision given by our approach and the
field insensitive approaches.

(c) Computing mirror image of a binary tree: Consider the
code fragment Fig. 4(c) which creates a mirror image of a
binary tree rooted atT. While swapping the left and right
sub-tree a temporary DAG is created (after statementS6),
which gets destroyed after the very next statementS7. As
depicted in Fig. 4(c), this shape transition is also captured in
our analysis.

7. CONCLUSION AND FUTURE WORK
In this paper we proposed a field sensitive shape analysis tech-

nique. We demonstrated how boolean functions along with field
sensitive matrices help in inferring the precise shape of the data
structure. While field sensitive matrices help in generating the
kill information for strong updates, boolean functions help in re-
membering the shape transition history with respect to eachheap-
directed pointer. We have shown some example scenarios thatcan
be handled more precisely by our analysis as compared to an exist-
ing field insensitive analysis. Our shape analysis can be utilized by
an optimizing compiler to disambiguate memory references.

We use a very simple inter procedural framework to handle func-
tion calls, that computes safe approximate summaries to reach fix
point. Our next challenge is to develop a better inter procedural
analysis to handle function calls more precisely. Further,we plan
to extend our shape analysis technique to handle more of frequently
occurring programming patterns to find precise shape for these pat-
terns. We are developing a prototype model using GCC framework
to show the effectiveness on large benchmarks. However, this work
is still in very early stages, and requires manual intervention. We
plan to automate the prototype in near future.

8. REFERENCES
[1] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W.

O’hearn, H. Yang, and Q. Mary. Shape analysis for
composite data structures. InCAV ’07.

[2] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of
pointers and structures. InPLDI ’90.

[3] S. Cherem and R. Rugina. Maintaining doubly-linked list
invariants in shape analysis with local reasoning. InVMCAI
’07.

[4] R. Cherini, L. Rearte, and J. Blanco. A shape analysis for
non-linear data structures. InSAS ’10.

[5] S. Dasgupta. Precise shape analysis using field sensitivity.
Technical report, Master’s thesis, IIT Kanpur, 2011.
http://goo.gl/3U3WV.

[6] D. Distefano, P. O’Hearn, and H. Yang. A local shape
analysis based on separation logic. InTACAS ’06.

[7] R. Ghiya and L. J. Hendren. Is it a Tree, a DAG, or a Cyclic
graph? a shape analysis for heap-directed pointers in C. In
POPL ’96.

[8] R. Ghiya and L. J. Hendren. Putting pointer analysis to work.
In POPL ’98.

[9] R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting parallelism in
c programs with recursive darta structures. InCC ’98.

[10] B. Hackett and R. Rugina. Region-based shape analysis with
tracked locations. InPOPL ’05.

[11] N. D. Jones and S. S. Muchnick. Flow analysis and
optimization of lisp-like structures. InPOPL ’79.

[12] M. Jump and K. S. McKinley. Dynamic shape analysis via
degree metrics. InISMM ’09.

[13] M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegildo.
A static heap analysis for shape and connectivity: unified
memory analysis: the base framework. InLCPC’06.

[14] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis
problems in languages with destructive updating. InPOPL
’96.

[15] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic.ACM TOPLAS, 24(3), 2002.

[16] R. Shaham, E. Yahav, E. K. Kolodner, and S. Sagiv.
Establishing local temporal heap safety properties with
applications to compile-time memory management. InSAS
’03.

